• 제목/요약/키워드: DLC (Diamond-like Carbon)

검색결과 318건 처리시간 0.031초

Solid Lubrication Characteristics of DLC Coated Alumina Seals in High Temperature

  • 옥철호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.356-356
    • /
    • 2007
  • Plasma immersion ion beam deposition (PIIBD) technique is a cost-effective process for the deposition of diamond like carbon thin film, the possible solid lubricant on large surface and a complex shape. We used PIIB process for the preparation of DLC thin film on $Al_2O_3$ with deposition conditions of deposition temperature range $200^{\circ}C$, working gas pressure of 1.310-1Pa. DLC thin films were coated by $C_2H_2$ ion beam deposition on $Al_2O_3$ after the ion bombardment of SiH4 as the bonding layer. Energetic bombardment of $C_2H_2$ ions during the DLC deposition to ceramic materials generated mixed layers at the DLC-Si interface which enhanced the interface to be highly bonded. Wear test showed that the low coefficient of friction of around 0.05 with normal load 2.9N and proved the advantage of the low energy ion bombardment in PIIBD process which improved the tribological properties of DLC thin film coated alumina ceramic. Furthermore, PIIBD was recognized as a useful surface modification technique for the deposition of DLC thin film on the irregular shape components, such as molds, and for the improvement of wear and adhesion problems of the DLC thin film, high temperature solid lubricant.

  • PDF

DLC 박막의 전기전도성, 투과율 및 가스베리어 특성에 관한 연구 (Study on Electrical Conductivity, Transmittance and Gas Barrier Properties of DLC Thin Films)

  • 박새봄;김치환;김태규
    • 열처리공학회지
    • /
    • 제31권4호
    • /
    • pp.187-193
    • /
    • 2018
  • In this study, the electrical conductivity, transmittance and gas barrier properties of diamond-like carbon (DLC) thin films were studied. DLC is an insulator, and has transmittance and oxygen gas barrier properties varying depending on the thickness of the thin film. Recently, many researchers have been trying to apply DLC properties to specific industrial conditions. The DLC thin films were deposited by PECVD (Plasma Enhanced Chemical Vapor Deposition) process. The doping gas was used for the DLC film to have electrical conductivity, and the optimum conditions of transmittance and gas barrier properties were established by adjusting the gas ratio and DLC thickness. In order to improve the electrical conductivity of the DLC thin film, $N_2$ doping gas was used for $CH_4$ or $C_2H_2$ gas. Then, a heat treatment process was performed for 30 minutes in a box furnace set at $200^{\circ}C$. The lowest sheet resistance value of the DLC film was found to be $18.11k{\Omega}/cm^2$. On the other hand, the maximum transmittance of the DLC film deposited on the PET substrate was 98.8%, and the minimum oxygen transmission rate (OTR) of the DLC film of $C_2H_2$ gas was 0.83.

컴프레서 부품의 DLC코팅 적용에 따른 트라이볼로지적 특성 연구 (Tribological Characteristics of DLC-Coated Part in Compressor)

  • 윤주용;서국진;한재호;전지환;송지영;고영덕;남자현;김선교;김대은
    • Tribology and Lubricants
    • /
    • 제38권1호
    • /
    • pp.8-14
    • /
    • 2022
  • Amorphous carbon (a-C) has excellent wear resistance and, therefore is used as a coating to protect numerous mechanical components to prolong their lifetimes. Among the a-C coatings, diamond-like carbon (DLC) and DLC-containing silicon (Si-DLC) receive extensive attention owing to their enhanced wear resistance and low frictional characteristics. In this study, the friction and wear characteristics of DLC and Si-DLC coatings are analyzed. For comparative analysis, DLC-coated and Si-DLC-coated vanes are utilized with the counterpart of a roller for the friction tests. Since the lubricated mechanical components are generally vulnerable to wear when a lubricant film does not form properly, friction tests are conducted under boundary lubrication conditions to promote wear. A cylinder-on-cylinder type tribometer is used to perform the friction tests with various normal load conditions. After the friction test, a 3D laser confocal microscope is used for quantifying the wear volume to calculate the wear rate of each specimen. Consequently, the DLC-coated specimen shows a lower coefficient of friction (COF) and wear rate than the specimen without the coating, while the Si-DLC coating shows a higher COF than the bare specimen. The results of this study are expected to contribute to improving the efficiency and reliability of compressors.

Hot-filament 플라즈마화학기상증착법 이용한 패턴된 DLC층 위에 탄소나노튜브의 선택적 배열

  • 최은창;박용섭;홍병유
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.293-293
    • /
    • 2010
  • Carbon nanotubes (CNTs) have attracted considerable attention as possible routes to device miniaturization due to their excellent mechanical, thermal, and electronic properties. These properties show great potential for devices such as field emission displays, CNT based transistors, and bio-sensors. The metals such as nickel, cobalt, gold, iron, platinum, and palladium are used as the catalysts for the CNT growth. In this study, diamond-like carbon (DLC) was used for CNT growth as a nonmetallic catalyst layer. DLC films were deposited by a radio frequency (RF) plasma-enhanced chemical vapor deposition (RF-PECVD) method with a mixture of methane and hydrogen gases. CNTs were synthesized by a hot filament plasma-enhanced chemical vapor deposition (HF-PECVD) method with ammonia (NH3) as a pretreatment gas and acetylene (C2H2) as a carbon source gas. The grown CNTs and the pretreated DLC filmswere observed using field emission scanning electron microscopy (FE-SEM) measurement, and the structure of the grown CNTs was analyzed by high resolution transmission scanning electron microscopy (HR-TEM). Also, using energy dispersive spectroscopy (EDS) measurement, we confirmed that only the carbon component remained on the substrate.

  • PDF

DLC 박막을 통한 전자광학추적장비 신뢰성 개선 (Reliability Improvement of the Electro Optical Tracking System by using DLC Films)

  • 심보현;조희진;김장은
    • 전자공학회논문지
    • /
    • 제52권5호
    • /
    • pp.197-205
    • /
    • 2015
  • 함정용 전자광학추적장비 열영상센서부 전면창의 신뢰성 및 성능 개선을 위해 플라즈마 화학기상증착법을 통해 제작되는 DLC 박막을 제안하였다. DLC 박막은 현재 사용되고 있는 실리콘 박막과 비교하여 뛰어난 강도와 낮은 마찰, 화학적 안정성이 우수하며 이로 인해 해상 환경에서 필연적으로 발생하는 열영상센서 전면창의 표면 박리를 최소화할 수 있는 장점이 있다. 본 실험을 통해, DLC 박막이 갖는 물리적 특성을 바탕으로 다양한 전자광학장비에 적용이 가능함을 확인하였다.

흑연소재가공용 공구의 DLC 코팅두께가 가공특성에 미치는 영향 (Effect on Tooling Characteristics to DLC-coated Thickness of Tool for Graphite Material)

  • 윤재호;김형균;최성대
    • 한국기계가공학회지
    • /
    • 제14권5호
    • /
    • pp.22-27
    • /
    • 2015
  • Processing of low toughness graphite material requires high-speed machine tools and DLC coating. In this study, results of investigation of the tool wear and machining properties of the DLC coating according to the thickness, and the machining time of the tool used for the machining of graphite electrodes, were as follows. 1. DLC coating thickness shows a larger wear amount of the tool center in accordance with thickness; the wear amount of the tool increases in proportion to the machining time. 2. The difference between the amount of wear depending on the processing time shows edge portions larger than the tool wear amount in the center. This amount of wear of the tool edge is formed since the rotating torque is in contact with the graphite material surface significantly more than the central portion. 3. The thicker the DLC coating, the more the coating tool eliminated of the coating area by the interface between the cemented carbide tool being coated with an increased friction of the graphite material and the DLC coating area.

DLC 코팅에 의한 사판식 피스톤 펌프의 저속 영역 동력 손실 개선 (Performance Improvement of a Swash Plate Type Piston Pump in the Low-Speed Range by a DLC Coating)

  • 홍예선;김종혁;이성렬
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권4호
    • /
    • pp.25-31
    • /
    • 2014
  • This paper details application of a DLC(Diamond Like Carbon)-coating to the swash plate and the ball joint of pistons that make sliding contact with the piston shoes of an axial piston pump. This process, aimed to reduce the frictional and leakage power losses of the hydrostatic piston shoe bearings at the low speed range. At lower speeds than 100rpm, the positive effects of the DLC-coating on the power loss reduction of the hydrostatic piston shoe bearings could be confirmed. These effects resulted in little improvement in volumetric efficiency of the test pump, but the mechanical efficiency could be raised by up to 5% at 100rpm; here, the DLC-coated swash plate played a more dominant role than the DLC-coated ball joint.

Electrochemical Evaluation of Si-Incorporated Diamond-Like Carbon (DLC) Coatings Deposited on STS 316L and Ti Alloy for Biomedical Applications

  • Kim, Jung-Gu;Lee, Kwang-Ryeol;Kim, Young-Sik;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • 제6권1호
    • /
    • pp.18-23
    • /
    • 2007
  • DLC coatings have been deposited onto substrate of STS 316L and Ti alloy using r.f. PACVD (plasma-assisted chemical vapor deposition) with a mixture of $C_{6}H_{6}$ and $SiH_{4}$ as the process gases. Corrosion performance of DLC coatings was investigated by electrochemical techniques (potentiodynamic polarization test and electrochemical impedance spectroscopy) and surface analysis (scanning electron microscopy). The electrolyte used in this test was a 0.89% NaCl solution of pH 7.4 at temperature $37^{\circ}C$. The porosity and protective efficiency of DLC coatings were obtained using potentiodynamic polarization test. Moreover, the delamination area and volume fraction of water uptake of DLC coatings as a function of immersion time were calculated using electrochemical impedance spectroscopy. This study provides the reliable and quantitative data for assessment of the effect of substrate on corrosion performance of Si-DLC coatings. The results showed that Si-DLC coating on Ti alloy could improve corrosion resistance more than that on STS 316L in the simulated body fluid environment. This could be attributed to the formation of a dense and low-porosity coating, which impedes the penetration of water and ions.

Development of a Photoemission-assisted Plasma-enhanced CVD Process and Its Application to Synthesis of Carbon Thin Films: Diamond, Graphite, Graphene and Diamond-like Carbon

  • Takakuwa, Yuji
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.105-105
    • /
    • 2012
  • We have developed a photoemission-assisted plasma-enhanced chemical vapor deposition (PAPE-CVD) [1,2], in which photoelectrons emitting from the substrate surface irradiated with UV light ($h{\nu}$=7.2 eV) from a Xe excimer lamp are utilized as a trigger for generating DC discharge plasma as depicted in Fig. 1. As a result, photoemission-assisted plasma can appear just above the substrate surface with a limited interval between the substrate and the electrode (~10 mm), enabling us to suppress effectively the unintended deposition of soot on the chamber walls, to increase the deposition rate, and to decrease drastically the electric power consumption. In case of the deposition of DLC gate insulator films for the top-gate graphene channel FET, plasma discharge power is reduced down to as low as 0.01W, giving rise to decrease significantly the plasma-induced damage on the graphene channel [3]. In addition, DLC thickness can be precisely controlled in an atomic scale and dielectric constant is also changed from low ${\kappa}$ for the passivation layer to high ${\kappa}$ for the gate insulator. On the other hand, negative electron affinity (NEA) of a hydrogen-terminated diamond surface is attractive and of practical importance for PAPECVD, because the diamond surface under PAPE-CVD with H2-diluted (about 1%) CH4 gas is exposed to a lot of hydrogen radicals and therefore can perform as a high-efficiency electron emitter due to NEA. In fact, we observed a large change of discharge current between with and without hydrogen termination. It is noted that photoelectrons are emitted from the SiO2 (350 nm)/Si interface with 7.2-eV UV light, making it possible to grow few-layer graphene on the thick SiO2 surface with no transition layer of amorphous carbon by means of PAPE-CVD without any metal catalyst.

  • PDF

고화소 카메라폰 모듈을 위한 Glass 렌즈 성형용 Silicon Carbide 코어의 초정밀 가공에 관한 연구 (A Study on Ultra Precision Grinding of Silicon Carbide Molding Core for High Pixel Camera Phone Module)

  • 김현욱;김정호;;곽태수;정상화
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.117-122
    • /
    • 2010
  • Recently, aspheric glass lens molding core is fabricated with tungsten carbide(WC). If molding core is fabricated with silicon carbide(SiC), SiC coating process, which must be carried out before the Diamond-Like Carbon(DLC) coating can be eliminated and thus, manufacturing time and cost can be reduced. Diamond Like Carbon(DLC) is being researched in various fields because of its high hardness, high elasticity, high durability, and chemical stability and is used extensively in several industrial fields. Especially, the DLC coating of the molding core surface used in the fabrication of a glass lens is an important technical field, which affects the improvement of the demolding performance between the lens and molding core during the molding process and the molding core lifetime. Because SiC is a material of high hardness and high brittleness, it can crack or chip during grinding. It is, however, widely used in many fields because of its superior mechanical properties. In this paper, the grinding condition for silicon carbide(SiC) was developed under the grinding condition of tungsten carbide. A silicon carbide molding core was fabricated under this grinding condition. The measurement results of the SiC molding core were as follows: PV of 0.155 ${\mu}m$(apheric surface) and 0.094 ${\mu}m$(plane surface), Ra of 5.3 nm(aspheric surface) and 5.5 nm(plane surface).