• Title/Summary/Keyword: DInSAR

Search Result 43, Processing Time 0.019 seconds

Study of Scattering Mechanism in Oyster Farm by using AIRSAR Polarimetric Data (AIRSAR 다중편파 자료를 이용한 굴 양식장 산란현상 연구)

  • Lee Seung-Kuk;Hong Sang-Hoon;Won Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.303-316
    • /
    • 2005
  • Strong radar returns were observed in oyster sea farms, and coherent interferometric pairs were successfully constructed. Tide height in coastal area is possible to be measured by using interferometric phase and intensity of SAR data. This SAR application technique for measuring the tide height in the near coastal zone can be further improved when applied to double bounce dominant areas. In this paper, we investigate the characteristics of polarimetric signature in the oyster farm structures. Laboratory experiments were carried out using Ku-band according to the target scale. Radar returns from vertical poles are stronger than those from horizontal Pole by 10.5 dB. Single bounce components were as strong as double bounce components and more sensitive to antenna look direction. Double bounce components show quasi-linear relation with the height of vertical poles, which implies double bounce is more useful to determine water level than total power. A L-band NASA/IPL airborne SAR (AIRSAR) image was classified into single-, double-bounce, and volume scattering components. It is observed that oyster farms are not always characterized by double bounced scattering. Double bounce is a main scattering mechanism in oyster farms standing above seawater, while single bounce is stronger than double bounce when bottom tidal flats are exposed to air. Ratios of the normalized single to double bounce components in the former and latter cases were 0.46 and 5.62, respectively. It is necessary to use double bounce dominant sea farms for tide height measurement by DInSAR technique.

Synthesis and Biological Investigations of New Thiazolidinone and Oxadiazoline Coumarin Derivatives

  • Abd Elhafez, Omaima Mohamed;El Khrisy, Ezz El Din Ahmed Mohamed;Badria, Farid;Fathy, Alaa El Din Mohamed
    • Archives of Pharmacal Research
    • /
    • v.26 no.9
    • /
    • pp.686-696
    • /
    • 2003
  • Ethyl (coumarin-4-oxy)acetate 1 was prepared through the reaction of 4-hydroxycoumarin with ethyl bromoacetate. Compound 1 was allowed to react with hydrazine hydrate to produce coumarin-4-oxyacetic hydrazide 2. The synthesis of N-(arylidene and alkylidene)-coumarin-4-oxyacetic hydrazones 3-20 was performed. The preparation of 2-substituted-3-[(coumarin-4-oxy) acetamido]thiazolidinones 21-26 and 2-[(coumarin-4-oxy )methyl]-4-acetyl-5-substituted-$\Delta^2$-1,3,4-oxadiazolines 27-33 was performed by the reaction of the hydrazones 3, 4, 7, 9, 12, 14 with mercaptoacetic acid and the hydrazones 3, 4, 5, 7, 12, 15, 16 with acetic anhydride, respectively. The antiviral activities, cytotoxicities and structure-activity relationship (SAR) towards different microorganisms of the prepared compounds were studied.

Measurement of Time-Series Surface Deformation at New Orleans Using Small Baseline Subset (SBAS) Method

  • Jo, Min-Jeong;Eom, Jin-Ah;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.49-52
    • /
    • 2008
  • New Orleans located in the estuary of the Mississippi River was attacked by Hurricane Katrina and suffered big flood on August 2005. Since unconsolidated Holocene to middle Miocene strata is the main basement rocks, land subsidence has been occurred steadily due to soil compaction and normal faulting. It was reported that the maximum subsidence rate from 2002 to 2005 was -29 mm/yr. Many studies in the area have been carried out for understanding the subsiding and potential risks caused by ground subsidence are weighted by the fact that a large area of the city is located below the mean sea level. A small baseline subset (SBAS) method is applied for effectively measuring time-series LOS (Line-of sight) surface deformation from differential synthetic aperture radar interferograms in this study. The time-series surface deformation at New Orleans was measured from RADARSAT-1 SAR images. The used dataset consists of twenty-one RADARSAT-1 fine beam mode images on descending orbits from February 2005 to February 2007 and another twenty-one RADARSAT-1 standard beam mode images on ascending orbits from January 2005 to February 2007. From this dataset, 25 and 38 differential interferograms on descending and ascending orbits were constructed, respectively. The vertical and horizontal components of surface deformation were extracted from ascending and descending LOS surface deformations. The result from vertical component of surface deformation indicates that subsidence is not significant with a mean rate of -3.1${\pm}$3.2 mm/yr.

  • PDF