• 제목/요약/키워드: DISI engine(Direct Injection Spark Ignition engine)

검색결과 19건 처리시간 0.02초

LPG 연료를 이용한 직접분사식 스파크점화 엔진의 특성에 관한 연구 (A Study on the Characteristics of Direct Injection Spark Ignition Engine using a Liquefied Petroleum Gas Fuel)

  • 이민호;정동수;차경옥
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.44-51
    • /
    • 2005
  • According to the increasing concern on the global environment, the $CO_2$ regulation has been discussed including automobile emission regulation. In order to cope with this rapid changing circumstances, the development of an ultra low emission and super fuel economy automobile is essential. Direct injection LPG engine is the one of the possible future engine to maximize the engine efficiency. This experimental study for the development of direct injection LPG engine technology is promoted with two parts; spray characteristics of high pressure swirl injector, and performance characteristics of direct injection LPG engine. Engine characteristics according to the fuel was analyzed in order to establish stratified combustion technology for LPG engine by using the DISI engine. In the engine experiment, control system was manufactured for gasoline and LPG fuel. The engine was modified 2,000 cc GDI engine (fuel supply device, fuel injection device). Through this experiment, engine operating condition, engine speed and spark timing (MBT), fuel injection position, and fuel rate were investigated.

직접분사식 가솔린엔진의 분사 비율에 따른 연소특성에 관한 연구 (A Study on the Characteristics of Combustion according to Injection Strategy in DISI Engine)

  • 인병덕;박상기;이기형
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.68-76
    • /
    • 2012
  • Recently, the important issues of gasoline engine are to reduce the fuel consumption and emission. Thus, many researchers are studying the technology to solve these problems. One approach of these issues is to achieve homogeneous charge combustion and stratified change combustion with various injection strategy. In this study, the combustion characteristics of DISI engine accrding to injection strategy were examined. The effect of injection timing on lean limit A/F were investigated using dual DISI single cylinder. The results show that the engine operation region of dual DISI type engine is larger than that of PFI and DISI type engine cases. Especially, late injection is very effective to extend the operation region more than any other injection timings. In addition, the results show that when the DISI injection ratio is increase, leam limit A/F is improved. It means that the dual injection system car meet with emission regulations and reduce the fuel consumption. Also, combustion pressure of dual injection system is much higher than PFI and DISI injection.

DISI 엔진용 스월인젝터와 슬릿인젝터의 분무 거동에 관한 연구 (An Experimental Study on the Spray Behaviors of Swirl and Slit Injector to Direct Injection Spark Injection Engine)

  • 이창희;이기형;최영종
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.19-27
    • /
    • 2005
  • The spray characteristics of DISI injector has a great role in engine efficiency and emission. Thus, many researchers have been studied to investigate the spray characteristics of hollow cone type and slit type injector which are used in DISI engine. In this study, we tried to provide spray parameters which effect on the spray characteristics such as injection pressure, ambient pressure and ambient temperature. In addition, we calculated $t_b\;and\;t_c$ to investigate the break up mechanism of test injectors and also obtained $C_v$ to evaluate the spray characteristics. From this study, As the ambient pressure increases in case of slit injector, $C_v$ decreases.

가솔린 및 LPG 연료를 사용하는 직접분사식 불꽃점화엔진에서 배출되는 극미세입자 배출 특성에 관한 연구 (Particulate Emissions from a Direct Injection Spark-ignition Engine Fuelled with Gasoline and LPG)

  • 이석환;오승묵;강건용;조준호;차경옥
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.65-72
    • /
    • 2011
  • In this study, the numbers, sizes of particles from a single cylinder direct injection spark-ignition (DISI) engine fuelled with gasoline and LPG are examined over a wide range of engine operating conditions. Tests are conducted with various engine loads (2~10bar of IMEP) and fuel injection pressures (60, 90, and 120 bar) at the engine speed of 1,500 rpm. Particles are sampled directly from the exhaust pipe using rotating disk thermodiluter. The size distributions are measured using a scanning mobility particle sizer (SMPS) and the particle number concentrations are measured using a condensation particle counter (CPC). The results show that maximum brake torque (MBT) timing for LPG fuel is less sensitive to engine load and its combustion stability is also better than that for gasoline fuel. The total particle number concentration for LPG was lower by a factor of 100 compared to the results of gasoline emission due to the good vaporization characteristic of LPG. Test result presents that LPG for direct injection spark ignition engine help the particle emission level to reduce.

직접분사식 가솔린 기관에서 흡입유동이 고압 11공 연료분사기의 분무형상에 미치는 영향 (The Effect of the Intake Flow on the Spray Structure of a High Pressure 11-Hole Fuel Injector in a DISI Engine)

  • 김성수
    • 대한기계학회논문집B
    • /
    • 제33권9호
    • /
    • pp.722-727
    • /
    • 2009
  • The effect of the intake flow on the spray structure of a high pressure 11-hole fuel injector were examined in a single cylinder optical direct injection spark ignition (DISI) engine. The effects of injection timing and in-cylinder charge motion were investigated using the 2-dimensional Mie scattering technique. It was confirmed that in the homogeneous charge mode, the in-cylinder swirl charge motion played a major role in the fuel spray distribution during the induction stroke rather than the tumble flow. But, in the stratified charge mode, the effect of the in-cylinder charge was not so large that the injected spray pattern was nearly maintained and the increase of in-cylinder pressure by the upward moving piston reduced the fuel spray penetration.

횡방향 유속 변화에 따른 고압 가솔린 스월 인젝터의 분무특성 (Spray Characteristics of High Pressure Gasoline Swirl Injector with Various Cross-flow Speeds)

  • 최재준;이용석;최욱;배충식
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2005
  • The spray prepared for direct fuel injection into cylinder is of great importance in a DISI(Direct Injection Spark Ignition) engine. The interaction between air flow and fuel spray was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of in-cylinder flow conditions in the DISI engine. The Mie-scattering images presented the macroscopic view of the liquid spray fields interacting with cross-flow Particle sizes of fuel droplets were measured with phase Doppler anemometer(PDA) system. A faster cross-flow field made SMD larger and $D_10$ smaller. The atomization and evaporation processes with a DISI injector were observed and consequently utilized to construct the database on the spray and fuel-air mixing mechanism as a function of the flow characteristics.

적접분사식 LPG엔진에서 연료분사압력이 연소/배기특성에 미치는 영향 연구 (Effects of Injection Pressures on Combustion and Emissions in a Direct Injection LPG Spark Ignition Engine)

  • 이석환;조준호;오승묵
    • 한국분무공학회지
    • /
    • 제16권1호
    • /
    • pp.7-14
    • /
    • 2011
  • High pressure LPG fuel spray with a conventional swirl injector was visualized and the impact of the injection pressure was also investigated using a DISI (direct injection spark ignition) LPG single cylinder engine. Engine performance and emission characteristics were evaluated over three different injection pressure and engine loads at an engine speed of 1500 rpm. The fuel spray pattern appeared to notably have longer penetration length and narrower spray angle than those of gasoline due to its lower angular momentum and rapid vaporization. Fuel injection pressure did not affect combustion behaviors but for high injection pressure and low load condition ($P_{inj}$=120 bar and 2 bar IMEP), which was expected weak flow field configuration and low pressure inside the cylinder. In terms of nano particle formation the positions of peak values in particle size distributions were not also changed regardless of the injection pressure, and its number densities were dramatically reduced compared to those of gasoline.

직접분사식 가솔린 엔진에서 연료 온도에 따른 팬형 분무 및 연소 특성의 변화 (The Effects of Fuel Temperature on the Spray and Combustion Characteristics of a DISI Engine)

  • 문석수;;배충식
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.103-111
    • /
    • 2006
  • The spray behavior of direct-injection spark-ignition(DISI) engines is crucial for obtaining the required mixture distribution for optimal engine combustion. The spray characteristics of DISI engines are affected by many factors such as piston bowl shape, air flow, ambient temperature, injection pressure and fuel temperature. In this study, the effect of fuel temperature on the spray and combustion characteristics was partially investigated for the wall-guided system. The effect of fuel temperature on the fan spray characteristics was investigated in a steady flow rig embodied in a wind tunnel. The shadowgraphy and direct imaging methods were employed to visualize the spray development at different fuel temperatures. The microscopic characteristics of spray were investigated by the particle size measurements using a phase Doppler anemometry(PDA). The effect of injector temperature on the engine combustion characteristics during cold start and warming-up operating conditions was also investigated. Optical single cylinder DISI engine was used for the test, and the successive flame images captured by high speed camera, engine-out emissions and performance data have been analyzed. This could give the way of forming the stable mixture near the spark plug to achieve the stable combustion of DISI engine.

6공 연료분사기를 장착한 DISI 엔진 내 균질급기의 연료증기 분포 특성 (The Study on the Fuel Vapor Distribution of Homogeneous Charge in a DISI Engine with a 6-Hole Fuel Injector)

  • 김성수
    • 동력기계공학회지
    • /
    • 제15권1호
    • /
    • pp.5-10
    • /
    • 2011
  • The spatial fuel vapor distribution of the homogeneous charge by a 6-hole injector was examined in a optically accessed single cylinder direct injection spark ignition(DISI) engine. The effects of in-cylinder charge motion, and fuel injection pressure, and coolant temperature were investigated using a planar LIF (Laser Induced Fluorescence) technique. It was confirmed that the in-cylinder tumble flow played a little more effective role in the spatial fuel vapor distribution than the swirl flow during the compression stroke at 10 mm and 2 mm planes under cylinder head gasket and the increased fuel injection pressure activated spatial distributions of the fuel vapor. In additions, richer mixtures were concentrated around the cylinder wall by the increase of the coolant temperature.