• Title/Summary/Keyword: DHVPM

Search Result 1, Processing Time 0.015 seconds

Development of Realtime Dam's Hydrologic Variables Prediction Model using Observed Data Assimilation and Reservoir Operation Techniques (관측자료 동화기법과 댐운영을 고려한 실시간 댐 수문량 예측모형 개발)

  • Lee, Byong Ju;Jung, Il-Won;Jung, Hyun-Sook;Bae, Deg Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.755-765
    • /
    • 2013
  • This study developed a real-time dam's hydrologic variables prediction model (DHVPM) and evaluated its performance for simulating historical dam inflow and outflow in the Chungju dam basin. The DHVPM consists of the Sejong University River Forecast (SURF) model for hydrologic modeling and an autoreservoir operation method (Auto ROM) for dam operation. SURF model is continuous rainfall-runoff model with data assimilation using an ensemble Kalman filter technique. The four extreme events including the maximum inflow of each year for 2006~2009 were selected to examine the performance of DHVPM. The statistical criteria, the relative error in peak flow, root mean square error, and model efficiency, demonstrated that DHVPM with data assimilation can simulate more close to observed inflow than those with no data assimilation at both 1-hour lead time, except the relative error in peak flow in 2007. Especially, DHVPM with data assimilation until 10-hour lead time reduced the biases of inflow forecast attributed to observed precipitation error. In conclusion, DHVPM with data assimilation can be useful to improve the accuracy of inflow forecast in the basin where real-time observed inflow are available.