• 제목/요약/키워드: DHA supplementation

검색결과 53건 처리시간 0.018초

식이 DHA와 환경보충이 흰쥐의 뇌지방조성 및 Acetylcholinesterase활성에 미치는 영향 (Effect of DHA and Environmental Enrichment on Brain Fatty Acid Composition and Acetylcholinesterase Activity)

  • 김문정
    • Journal of Nutrition and Health
    • /
    • 제29권1호
    • /
    • pp.32-40
    • /
    • 1996
  • To investigate the effect of dietary docosahexaenoic acid(DHA) and environmental enrichment on brain fatty acid composition and acetylcholinesterase(AChE) activity, two groups of was fed isocaloric diets containing 10 or 12% dietary lipids for 7 weeks. A third group was fed 10% (w/w) dietary lipids with supplemented 2% DHA-rich fish oil. Each diet group was housed either in a stainless steel cage individually or in a large enriched cage with toys where 7 rats were kept together. The fatty acid composition of plasma and brain was significantly affected by dietary lipid composition but not by environmental enrichment. Fish oil supplementation significanlty decreased plasma levels of monounsaturated fatty acids(MUFA) and increased polyunsaturated fatty acids(PUFA). Fish oil supplemented groups also maintained lower plasma n-6 fatty acids and higher n-3 fatty acids levels than unsupplemented groups. The fish oil supplementation significantly decreased arachidonic acid and increased eicosapentaenic, docosapentaenoic acids, and DHA in brain fatty acid composition. In addition, brain DHA level in supplemented groups tended higher than the unsupplemented. Brain, AChE activity significantly increased by the environmental enrichment but not by the fish oil supplementation. These finding suggest that the 2% fish oil (0.57% DHA & 0.31% EPA, per diet weigth) supplementation is enough to accumulate n-3 fatty acids and to change the n-6 n-3 ratio in brain and environmental enrichment might promote the learning ability.

  • PDF

쥐에서 뇌발달 과정중에 식이에 첨가한 DHA와 AA가 뇌조직의 지방산조성과 DNA 함량에 미치는 영향 (Effect of Dietary Supplementation of DHA and AA on the Incorporation of Long Chain Fatty Acid and DNA Content in the Developing Brain of Rats)

  • 박현서
    • Journal of Nutrition and Health
    • /
    • 제32권5호
    • /
    • pp.526-532
    • /
    • 1999
  • The aim of this study was to observe whether the dietary supplementation of docosahexaenoic acid(DHA). In growing rats requires extra supplementation of arachidonic acid(AA) for brain development. Sprague-Dawley rats were divided into three groups, each fed a different diet. In the FO group, dams were fed a DHA-rich FO diet during pregnancy and lactation and pups were fed the same diet until 10 weeks old. In the AO group dams and pups were similarly fed a FO diet after weaning. DHA and AA were most effetively deposited in the developing brain during pregnancy and lactation in rats. However, FO-W pups showed significantly lower level of DHA at 0-3 weeks compared with the FO and AO groups and than slowly increased DHA levels to about 87% of other groups at 10 weeks with the introduction of the FO diet after weaning. The total amount of DNA in whole brain rapidly reached a maximum level at 3 weeks and then was sustained at a constant level after 5 weeks of age. The DNA content was positively correlated with DHA level but not with AA level in the developing brain. DNA content was significantly lower in the FO-W group compared to the FO and AO group at 3 weeks of age. However, the DNA content of brain in FO-W pups increased to 80% of the FO group level at 10 weeks after feeding the FO diet after weaning. The relative percentage of AA in brain lipids was significantly reduced in the early stage of brain development when only DHA was supplemented. However, DHA supplementation had no significant effect on the incorporation of AA when the approximately 35% of LA in the FO diet was substituted by preformed AA. These results suggest that large quantities of DHA could interfere with the normal conversion of LA to AA if LA is not supplemented enough together with DHA. Therefore, high DHA supplementation may require preformed AA in the diet even though AA has no significant correlation with the DNA content in brain. DHA supplementation after weaning also improved the incorporation of DHA into brain and content of DNA even though brain development was almost completed, suggesting that a low level of DHA supplementation without AA addition might be necessary to improve brain development during infancy as well as during pregnancy and lactation.

  • PDF

수유기에 식이와 함께 섭취한 DHA가 산모의 혈액과 모유의 지질조성에 미치는 영향 (The Influence of DHA Supplementation in Maternal Diets on Fatty Acid Compositions of Plasma Lipids and Human Milk)

  • 조여원
    • Journal of Nutrition and Health
    • /
    • 제29권2호
    • /
    • pp.213-222
    • /
    • 1996
  • The most abundant long-chain polyunsaturated fatty acid in brain lipids is docosahexaenoic acid(C22 : 6 N-3, DHA). It is incorporated into nerve tissues mostly in utero and during the first year of life. DHA in brain is derived from either pre-formed DHA in human milk or by infant hepatic synthesis from linolenic acid in milk. This study was designed to investigate the effects of DHA supplementation on fatty acid profiles in maternal plasma lipid and breast milk. Twenty lactating women participated in the study. Seven women took 3g of fish oil per day and vitamin E for 28 days starting from the day of giving birth. Five women consumed 1.5g of fish oil as well as tivamin E, and the rest took vitamin E supplements for the same period of time. Dietary questionnaires and 3 consecutive 24-h recalls were collected to evaluate theri nutritional status and food habits. Finding that DHA intake from fish was not significantly different among three experimental groups, the partcipants were instructed to continue eating their usual home diets. Milk samples were taken on the day of giving birth, as well as the 7th, 14th and 28th day being the supplement phase, and finally 2 weeks after the cessating of DHA supplements. The amounts of the fish oil supplements produced significant dose-dependent increased in the DHA content of milk and plasma, but to a lesser degree. Base-line for 28 days raised the level to 2.05$\pm$0.43% and 1.5g/day supplement produced DHA levels of 1.02$\pm$0.19%. The results of this study indicated that relatively small amount of dietary DHA supplementation significantly elevats DHA content in milk. This would clearly elevate the infant's DHA intake which in turn may have implications for the infant's brain development.

  • PDF

Efficacy of the combined supplementation of choline and docosahexaenoic acid during gestation on developmental outcomes of rat pups

  • Rajarethnem Huban Thomas;Kumar Megur Ramakrishna Bhat;Sivakumar Gopalkrishnan;Kiranmai Sesappa Rai
    • Journal of Nutrition and Health
    • /
    • 제56권6호
    • /
    • pp.655-666
    • /
    • 2023
  • Purpose: Gestational nutrition has an impact on the growth and development of the fetus. Choline (C) and docosahexaenoic acid (DHA) are important and essential nutrients for humans that play a role in the structural integrity of the membranes as well as signalling. C is used in the synthesis of phosphatidylcholine, and cell membranes are highly enriched with DHA. The dietary intake of C or DHA during pregnancy directly influences fetal development. Currently, there is no evidence to prove the effectiveness of the combined dietary supplementation of both C and DHA during gestation on developmental outcomes in the offspring. Methods: The current study was designed to assess the physical, sensory, and motor development of rat pups born to mothers supplemented with C and/or DHA during the entire gestational period. Pregnant rat dams were divided into the following five groups: Normal control (NC), Saline control (SC), Choline (C), DHA, and Choline+DHA (C+DHA). The NC dams did not receive any supplementation during the entire gestation period. The experimental groups were supplemented with Saline, C, and/or DHA, respectively, during the entire gestation (E0 to delivery). Results: Rat pups (n = 6/group) exposed to combined C and DHA showed significant improvement in birth weight, fur development, eye-opening as well as weight gain on the 7th, 14th, and 21st postnatal day and pinnae detachment (assessed from birth to postnatal day 21) when compared with age-matched NC, SC or C or DHA pups. Further, significant reflex responses were observed in visual placing and bar holding of pups exposed to both C and DHA, whereas the differences in surface righting, negative geotaxis, and grasping reflexes were not significant between the groups. Conclusion: Gestational supplementation of both C and DHA rather than either of them alone is better in enhancing developmental outcomes in rat pups.

쥐에서 임신기, 수유기 및 이유후에 식이로 섭취한 어유가 뇌조직의 DHA 분포량에 미치는 영향 (Influence of Dietary Supplementation of Fish Oil at Different Life Cycle on the Incorporation of DHA into Brain in Rats)

  • 박기호;박현서
    • Journal of Nutrition and Health
    • /
    • 제31권7호
    • /
    • pp.1100-1111
    • /
    • 1998
  • The incorporation of docosahexaenoic acid(DHA) and arachidonic acid(AA) into brain and liver lipid has been compared in male pups from binth to 10 weeks old by feeding DHA-rich experimental diets or chow diets to dams from pregnancy in rats. The experimental DHA-rich diets contained 7g fish oil and 3g corn oil per 100g diet. There were three experimental groups, FO-I : Dams were fed DHA-rich diet during pregnancy and lactation, and their it pups fed the same diet until 10 weeks old. FO-II Dams fed chow diet during pregnancy and DHA-diet during lactation, and their pups fed the same DHA-diet until 10 weeks. FO-III : Dams fed chow diet during gestation and lactation, and then the pups fed DHA-diet after weaning. The relative % of DHA in hepatic lipid was about 12% with chow diets, but increased rapidly to 20-25% level when DHA-rich diets were supplied after weaning. The AA(%) of FO-III group was relatively high when a chow diet containing higher amount of linoleic acid was given, but there was no significant difference between the groups after feeding on a DHA-rich diet. When the DHA-rich diet was supplied from pregnancy(FO-I), the relative % of DHA in brain lipid was 13.7% at birth and continuously increased to a maximum level(17.2%) at 3-weeks and then was sustained until 5 weeks old. Similar levels of DHA incorporation were observed when DHA-rich diet was supplied from lactation(FO-II). However, the pups of FO-III group showed significantly lower levels of DHA incorporation(72%) at birth. These livels slowly increased and reached an 87% level of FO-I at 10 weeks when the pups ate DHA-rich diets after weaning. The relative % of AA in brain lipid was 10.4% in the FO-I group at birth, which was significantly lower than those of other groups, but there was no significant difference between groups after feeding DHA-rich diets in all groups. The Ah(%) level increased to maximum(11-12%) at 3-weeks and then was slightly reduced and was sustained at about 10% after S-weeks. Total amounts of DNA in the whole brain rapidly reached maximum level at 3-weeks and then was sustained at a constant level after S-weeks. DNA content was not significantly different between groups at birth, but it was significantly higher in FO-I and FO-II groups than in FO-III group at 3-weeks. However, DNA content in FO-III group was continuously increased to 80% level of FO-I at 10-weeks after feeding DHA-rich diet since weaning. In conclusion, the DHA(%) in whole brain was most effectively deposited when DHA-rich diet had been supplied during pregnancy and lactation in rats. However, DHA supplementation after weaning also improved the incorporaton of DHA into brain and content of DNA even though brain development was almost completed, which suggests that DHA supplementation might be necessary to improve brain development in humans during infancy as well as pregnancy and lactation. (Korean J Nutrition 31(7) 1100-1111, 1998)

  • PDF

DHA 보충이 영아의 적혈구 지방산조성과 두뇌발달에 미치는 영향 (The Effects of DHA-Supplemented Formula on the Fatty Acid Composition of Erythrocyte and Brain Development in Full-Term Infants)

  • 손보경
    • Journal of Nutrition and Health
    • /
    • 제30권5호
    • /
    • pp.478-488
    • /
    • 1997
  • Omega-3 fatty acid, docosahexaenoic acid(DHA) is found in a high proportion in the structural lipids of cell membranes, in particular those of the central nervous system and the retina. Diet-induced changes in fatty acid composition in these tissues may affect physiochemical functions. This study was conducted to investigate whether supplements of DHA in infant formula has an effect on the composition of fatty acids in erythrocytes with regard to brain development. Experimental groups were breastmilk group(n=21), placebo formula group(n=15), and DHA supplemented formula (0.26%) group(n=16). Infants were selected by mothers who deliverecdd at Kyung Hee medical center from February to April, 1996. Infant body weight, length, and head circumference were similar among the experimental groups at 16 weeks of age. The levels of DHA in breastmilk, placebo formula, and DHA supplemented formula were 0.56, 0, and 0.26% of total fatty acids, respectively. There was a significant correlation between dietary DHA intake and erythrocyte DHA levels. The levels of arachidonic acid did not differ among the three expermental groups. The result of flash visual evoke potential(VEP) test was correlated with the erythrocyte levels and dietary DHA levels at 16 weeks of age. No other fatty acid was correlated with VEP test results. No differences were found in Bayley Mental and Psychomotor Development Index scores among the three groups at 20 weeks of age. DHA seems to be an essential nutrient for optimum growth and maturation of term infants. Relatively small amounts of dietary DHA supplementation significantly elevate DHA supplementation significantly elevate DHA content in erythrocytes, which in turn has an implication for better scores for infant's VEP test. Whether supplementation of formula-fed infants with DHA has long-term benefits remains to be elucidated.

  • PDF

Dietary supplementation of finishing pigs with the docosahexaenoic acid-rich microalgae, Aurantiochytrium limacinum: effects on performance, carcass characteristics and tissue fatty acid profile

  • Moran, Colm A.;Morlacchini, Mauro;Keegan, Jason D.;Fusconi, Giorgio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권5호
    • /
    • pp.712-720
    • /
    • 2018
  • Objective: The aim of this experiment was to evaluate the effect of dietary supplementation with the docosahexaenoic acid (DHA)-rich microalgae, Aurantiochytrium limacinum (AURA) on pig performance, carcass traits, and the fatty acid composition of pork Longissimus lumborum (LL) and backfat. Methods: A total of 144 Pig Improvement Company (PIC)${\times}$Goland finishing pigs (72 females and 72 castrated males) of mean weight 117.1 (${\pm}13.1$) kg were blocked by sex and body weight and provided with 0% or 1% AURA in isonutritive and isocaloric diets. A total of 24 pens provided 12 replicates per treatment. Animals were weighed on day 0 and 28 with feed and water intake recorded per pen. After 31 days supplementation (28 days of study and 3 days until the slaughtering date) three animals per pen (n = 72) were slaughtered and the LL and backfat thickness, lean meat content and dressing percentage were recorded for the carcasses. The fatty acid (FA) profile of the LL and backfat was established by direct FA methyl ester synthesis. Results: No differences were observed for any performance parameters or carcass traits. Supplementation with AURA resulted in significant changes to the FA profiles of both the LL and backfat with male and female pigs responding differently to supplementation in terms of particular FAs. Overall, pork LL samples had significantly higher eicosapentaenoic acid (p<0.001) and DHA concentrations (p<0.001), and higher omega-3 (n-3) FAs (p<0.001), as well as an increased omega3:omega6 (n-3:n-6) ratio (p = 0.001). For backfat, supplementation resulted in significantly higher amounts of DHA (p<0.001) and n-3 FAs (p<0.001). Conclusion: These results indicate that dietary supplementation with 1% AURA over a 31 day period can increase the FA composition of pork LL and backfat, specifically the DHA, with no major impact on growth performance and carcass traits.

임신기부터 성장기 동안 Docosahexaenoic Acid 보충에 의한 흰쥐의 공간기억력 개선 효과 (Effect of Supplementation with Docosahexaenoic Acid from Gestation to Adulthood on Spatial Learning Performance in Rat)

  • 임선영
    • 생명과학회지
    • /
    • 제17권10호
    • /
    • pp.1400-1405
    • /
    • 2007
  • SD계 흰쥐를 사용하여 motor activity 실험에서 동물들의 자발적인 운동성을 측정한 결과, 주어진 시간 내 움직인 시간과 움직인 거리에는 n-3 지방산이 결핍된 식이군(Def group)과 DHA가 첨가된 식이군(Def +DHA group)간에 유의적 차이를 관찰할 수가 없었다. 학습효과 실험에서 n-3 지방산이 결핍된 식이군(Def group)의 경우 목적 플래트폼까지 걸리는 시간이 DHA 첨가 식이군(Def +DHA group)에 비하여 유의적으로 길었음을 관찰할 수가 있었다(p<0.05). 수영한 거리(swimming distance)와 수영 속도(swimming speed)의 경우 수영 속도에는 유의적 차이가 없었으나 n-3 지방산이 결핍된 식이군(Def group)의 경우, DHA 첨가 식이군(Def +DHA group)에 비해 수영 풀에서 움직인 거리가 유의적으로 길었다(p<0.05). 두 식이군의 흰쥐들이 수영한 시간(swimming time)과 쉬고 있는 시간(resting time)의 경우, 쉬는 시간에는 유의적 차이가 없었으나 수영 시간 또한 n-3 지방산이 결핍된 식이(Def group)로 사육된 쥐가 DHA가 첨가된 식이로 사육된 쥐(Def +DHA group)보다 수영한 시간이 유의적으로 길었다(p<0.05). 기억력 테스트에서 n-3 지방산이 결핍된 식이군(Def group)의 경우 원래 A 지역에 대한 기억이 낮아서 A 지역을 지나가는 횟수가 다른 지역 B, C, D를 지나는 횟수와 유의적 차이가 없었다. 반면, DHA가 첨가된 식이군(Def +DHA group)의 경우 목적 플래트폼이 있었던 A 지역에 대한 기억으로 다른 지역인 B, C, D보다 지나가는 횟수가 유의적으로 많았음을 관찰하였다(p<0.05). 이상의 결과로부터 임신에서부터 성인이 될 때까지 n-3 지방산이 결핍된 식이로 사육된 쥐와 비교할 때 DHA가 첨가된 식이로 사육된 흰쥐가 Morris water maze를 이용한 공간기억력 실험에서 우수한 기억 학습효과를 나타냄을 알 수가 있었고 이러한 결과는 n-3와 n-6 지방산의 균형적인 섭취의 중요성을 부각시키고 있다.

Effects of Dietary Algal Docosahexaenoic Acid Oil Supplementation on Fatty Acid Deposition and Gene Expression in Laying Tsaiya Ducks

  • Cheng, C.H.;Ou, B.R.;Shen, T.F.;Ding, Shih-Torng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권7호
    • /
    • pp.1047-1053
    • /
    • 2006
  • The current study was designed to determine the effects of dietary docosahexaenoic acid (DHA) on fatty acid deposition in egg yolk and various tissues of laying Tsaiya ducks, and on the mRNA concentrations of hepatic lipogenesis-related transcription factors. Thirty laying ducks were randomly assigned to three treatments with diets based on corn-soybean meal (ME: 2803 kcal/kg; CP: 17.1%; Ca: 3.4%) supplemented with 0% (control diet), 0.5% or 2% algal DHA oil. The DHA content in egg yolks of the ducks was elevated significantly (p<0.01) with the supplementation of dietary DHA. The DHA percentage of the total fatty acids in the egg yolk of laying ducks was 0.5%, 1.3% and 3.4% for 0%, 0.5% and 2% algal DHA oil treatments, respectively, for the $1^{st}$ week, and 0.5%, 1.5% and 3.3% for the $2^{nd}$ week. Therefore, algal DHA oil can be utilized by laying Tsaiya ducks to enhance the egg-yolk DHA content. The concentrations of triacylglycerol (TG) and cholesterol in plasma of laying Tsaiya ducks were not affected by dietary DHA treatments (p>0.05). The DHA concentration in plasma, liver, and skeletal muscle was increased with the addition of dietary algal DHA oil (p<0.05). The mRNA abundance of sterol regulatory element binding protein 1 (SREBP1) and SREBP2 in the livers of laying Tsaiya ducks was not affected by dietary DHA, suggesting that the expression of these transcription factors is tightly controlled and not sensitive to DHA treatments.

Effects of Docosahexaenoic Acid on Neurotransmission

  • Tanaka, Kazuhiro;Farooqui, Akhlaq A.;Siddiqi, Nikhat J.;Alhomida, Abdullah S.;Ong, Wei-Yi
    • Biomolecules & Therapeutics
    • /
    • 제20권2호
    • /
    • pp.152-157
    • /
    • 2012
  • Docosahexaenoic acid (DHA) is the major polyunsaturated fatty acid (PUFA) in the brain and a structural component of neuronal membranes. Changes in DHA content of neuronal membranes lead to functional changes in the activity of receptors and other proteins which might be associated with synaptic function. Accumulating evidence suggests the beneficial effects of dietary DHA supplementation on neurotransmission. This article reviews the beneficial effects of DHA on the brain; uptake, incorporation and release of DHA at synapses, effects of DHA on synapses, effects of DHA on neurotransmitters, DHA metabolites, and changes in DHA with age. Further studies to better understand the metabolome of DHA could result in more effective use of this molecule for treatment of neurodegenerative or neuropsychiatric diseases.