• Title/Summary/Keyword: DG interconnection

Search Result 31, Processing Time 0.023 seconds

Systolic Array Implementaion for 2-D IIR Digital Filter and Design of PE Cell (2-D IIR 디지탈필터의 시스토릭 어레이 실현 및 PE셀 설계)

  • 박노경;문대철;차균현
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.1E
    • /
    • pp.39-47
    • /
    • 1993
  • 2-Dimension IIR 디지털 필터를 시스토릭 어레이 구조로 실현하는 방법을 보였다. 시스토릭 어레이는 1-D IIR 디지털 필터로 부분 실현한 후 종속연결하여 구현하였다. 부분 실현한 시스토릭 어레이의 종속 연결은 신호 지연에 사용되는 요소를 감소 시킨다. 여기서 1-D 시스토릭 어레이는 local communication 접근에 의해 DG를 설계한후 SFG로의 사상을 통해 유도하였다. 유도된 구조는 매우 간단하며, 입력 샘플이 공급되어지면 매 샘플링 기간마다 새로운 출력을 얻는 매우 높은 데이터 처리율을 갖는다. 2-Dimension IIR 디지털 필터를 시스토릭 어레이로 실현함으로써 규칙적이고, modularity, local interconnection, 높은 농기형 다중처리의 특징을 갖기 때문에 VLSI 실현에 매우 적합하다. 또한 PE셀의 승산기 설계에서는 modified Booth's 알고리즘과 Ling's 알고리즘에 기초를 두고 고도의 병렬처리를 행할수 있도록 설계하였다.

  • PDF

2-DG Autoradiographic Imaging of Brain Activity Patterns by Electroacupuncture Stimulation in Awake Rats (전침자극(電針刺戟)에 의한 흰쥐 중추신경계(中樞神經系)내 대사활성(代謝活性) 변화(變化)의 영상화(映像化) 연구(硏究))

  • Sohn, Young-Joo;Won, Ran;Jung, Hyuk-Sang;Kim, Yong-Suk;Park, Young-Bae;Sohn, Nak-Won
    • Journal of Acupuncture Research
    • /
    • v.18 no.3
    • /
    • pp.56-68
    • /
    • 2001
  • Objective : Functional brain mapping study on acupuncture stimulation using the [14C]2-deoxyglucose([14C]2-DG) autoradiography provides quantitative data and visualized pathway in central nervous system(CNS). We aimed to investigate the neural pathway and spatial distribution of metabolic activity elicited in CNS on electroacupuncture stimulation using [14C]2-DG autoradiography. Methods : The study were divided into three groups by stimulation times. 45-mins stimulation group according to Sokoloffs method, 5-mins stimulation group according to Duncun's method, and 15-mins stimulation group. ;A venous catheter was equipped into right jugular vein. The rats (Sprague-Dawley rats, 230-260g) were kept fastened loosely on a holding platform without anesthesia. Electroacupuncture stimulation (5 ms, 2 Hz, 1~3 mA) were applied on the left Zusanli (ST36) acupoint and [14C]2-DG ($25{\mu}Ci/rat$) injection was performed through the catheter. After sacrifice, the brain and the spinal cord were made to sections for film image. The film images were digitalized as the isotope concentration based upon comparison of optical densities with that of the standards and normalized by the optical density of corpus callosum. Results : 1. 15-mins stimulation group was most effective among 3 experiments. 2. On 15-mins stimulation group, medial geniculate nucleus, intetpeduncular nucleus intermedius, ventral periolivary nucleus, caudal periolivary nucleus, medial superior olive, lateral paragigantocellular nucleus, including hypothalamic arcuate nucleus were increased by more than 25% (at least, p<0.05) by electroacupuncture stimulation. 3. Especially, the metabolism in hypothalamic arcuate nucleus was increased by 90% (p<0.05). 4. The fact that arcuate nucleus of hypothalamus might play a role of interconnection area between ascending and descending pathway of acupuncture stimulation was demonstrated visually. Conclusions : Advanced study on electroacupuncture stimulation elicited significant increase of metabolic activity in various nuclei of hypothalamus will provide the important experimental basis in research of the relationship between electroacupuncture stimulation and internal visceral functions.

  • PDF

Modeling of Practical Photovoltaic Generation System using Controllable Current Source based Inverter (제어 가능한 전류원 기반의 인버터를 이용한 실제적 태양광 발전 시스템 모델링)

  • Oh, Yun-Sik;Cho, Kyu-Jung;Kim, Min-Sung;Kim, Ji-Soo;Kang, Sung-Bum;Kim, Chul-Hwan;Lee, You-Jin;Ko, Yun-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1340-1346
    • /
    • 2016
  • Utilization of Distributed Generations (DGs) using Renewable Energy Sources (RESs) has been constantly increasing as they provide a lot of environmental, economic merits. In spite of these merits, some problems with respect to voltage profile, protection and its coordination system due to reverse power flow could happen. In order to analyze and solve the problems, accurate modeling of DG systems should be preceded as a fundamental research task. In this paper, we present a PhotoVoltaic (PV) generation system which consists of practical PV cells with series and parallel resistor and an inverter for interconnection with a main distribution system. The inverter is based on controllable current source which is capable of controlling power factors, active and reactive powers within a certain limit related to amount of PV generation. To verify performance of the model, a distribution system based on actual data is modeled by using ElectroMagnetic Transient Program (EMTP) software. Computer simulations according to various conditions are also performed and it is shown from simulation results that the model presented is very effective to study DG-related researches.

An Overcurrent Analysis in Neutral Line and Algorithm to Prevent Malfunction of Relay in Distributed Generations (분산전원 연계선로에서 지락고장시 중성선의 과전류 해석 및 보호계전기의 새로운 알고리즘)

  • Shin, Dong-Yeol;Kim, Dong-Myung;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1916-1922
    • /
    • 2009
  • Introducing distributed generators(DGs) to utility distribution system can cause malfunction of relay on the grid when ground faults or severe load unbalances are occurred on the system. Because DGs interconnected to the grid can contribute fault currents and make bidirectional power flows on the system, fault currents from DGs can cause an interference of relay operation. A directional over current relay(DOCR) can determine the direction of power flow whether a fault occurs at the source side or load side through detecting the phases of voltage and current simultaneously. However, it is identified in this paper that the contributed fault current(Ifdg) from the ground source when was occurred to contribute single-line-to-ground(SLG) fault current, has various phases according to the distances from the ground source. It means that the directionality of Ifdg may not be determined by simply detecting the phases of voltage and current in some fault conditions. The magnitude of Ifdg can be estimated approximately as high as 3 times of a phase current and its maximum is up to 2,000 A depending on the capacity of generation facilities. In order to prevent malfunction of relay and damage of DG facilities from the contribution of ground fault currents, Ifdg should be limited within a proper range. Installation of neutral ground reactor (NGR) at a primary neutral of interconnection transformer was suggested in the paper. Capacity of the proposed NGR can be adjusted easily by controlling taps of the NGR. An algorithm for unidirectional relay was also proposed to prevent the malfunction of relay due to the fault current, Ifdg. By the algorithm, it is possible to determine the directionality of fault from measuring only the magnitude of fault current. It also implies that the directionality of fault can be detected by unidirectional relay without replacement of relay with the bidirectional relay.

The Over-current relay considering operating conditions of the micro-grid (마이크로그리드의 운전조건을 고려한 과전류계전기)

  • Kang, Yong-Cheol;Kang, Hae-Gweon;Cha, Sun-Hee;Jang, Sung-Il;Lee, Byung-Eun;Kim, Yong-Gyun;Park, Goon-Cherl
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.484-485
    • /
    • 2008
  • A micro-grid (MG) is a new concept to aggregate distributed generations (DGs) and loads in a small area. The difference between MG and DG is that MG can supply power to loads even in islanding conditions. The magnitude of the fault current depending on interconnection between the MG and utility and the number of DGs in the MG. Therefore, the setting value of the OCR must be changed depending on operating conditions of the MG. This paper proposes the over-current relay considering operating conditions of the MG. In the proposed algorithm, the supervisory control and data acquisition decides the operating conditions of the MG and sends the proper setting values to each OCR. The performance of the algorithm was investigated in the case of the various operating conditions.

  • PDF

A Study on the Evaluation Algorithm of Distribution Systems Interconnected with Dispersed Generations (분산전원의 배전계통연계 자동판정 알고리즘 개발에 관한 연구)

  • Rho, Dae-Seok;Kim, Jae-Eon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1910-1920
    • /
    • 2007
  • This paper deals with the optimal evaluation algorithms for voltage regulation in the case where new dispersed generations(DG) are operated in distribution systems. It is very difficult and complicated to handle the interconnection issues for proper voltage managements, because professional skills and enormous amounts of data for the evaluations are required. The typical evaluation algorithms mainly depending on human ability and quality of data acquired, inevitably cause the different results for the same issue, so unfair and subjective evaluations are unavoidable. In order to overcome these problems, the paper proposes reasonable and general algorithms based on the standard model system and proper criterion, which offers the fair and objective evaluations in any case. The proposed algorithms are divided by two main themes. One is an optimal algorithm for the voltage control of multiple voltage regulators in order to deliver suitable voltage to as many customers as possible, and the other is a proper evaluation algorithm for the voltage management at normal and emergency conditions. The results from a case study show that the proposed methods can be a practical tool for the voltage management in distribution systems including dispersed sources.

Design and fAbrication of Triple Band WLAN Antenna Applicable to Wi-Fi 6E Band with DGS (DGS를 갖는 Wi-Fi 6E 대역을 위한 삼중대역 WLAN 안테나 설계 및 제작)

  • Sang-Wook Park;Gi-Young Byun;Joong-Han Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.345-354
    • /
    • 2024
  • In this paper, we propose a triple band WLAN antenna for Wi-Fi 6E band with DGS. The proposed antenna has the characteristics required frequency band and bandwidth by considering the interconnection of two strip lines and three areas on the ground place. The total substrate size is 31 mm (W) × 50 mm (L), thickness (h) 1.6 mm, and the dielectric constant is 4.4, which is made of 22 mm (W6 + W4 + W5) × 43mm (L1 + L2 + L3 + L5) antenna size on the FR-4 substrate. From the fabrication and measurement results, bandwidths of 340 MHz (1.465 to 1.805 GHz) for 900 MHz band, 480 MHz (2.155 to 2.635 GHz) for 2.4 GHz band and 1950 MHz (4.975 to 6.925 GHz) for 5.0/6.0 GHz band were obtained on the basis of -10 dB. Also, gain and radiation pattern characteristics are measured and shown in the frequency triple band as required.

Design and Fabrication of Quadruple Band Antenna with DGS (DGS를 적용한 4중대역 안테나의 설계 및 제작)

  • Kim, Min-Jae;Choi, Tea-Il;Choi, Young-Kyu;Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.31-38
    • /
    • 2020
  • In this paper, we propose a quadruple band antenna for GPS/WLAN/WiMAX application. The proposed antenna has quadruple band characteristics by considering the interconnection of four strip lines and DGS on the ground place. The total substrate size is 20.0 mm (W1) ⨯27.0 mm (L1), thickness (h) 1.0 mm, and the dielectric constant is 4.4, which is made of 20.0 mm (W2)⨯ 27.0 mm (L8 + L6+ L10) antenna size on the FR-4 substrate. From the fabrication and measurement results, bandwidths of 60 MHz (1.525 to 1.585 GHz) bandwidth for GPS band, 825 MHz (3.31 to 4.135 GHz) bandwidth for WiMAX band and 480 MHz (2.395 to 2.975 GHz) and 385 MHz (5.10 to 5.485 GHz) bandwidth for WLAN band were obtained on the basis of -10 dB. Also, gain and radiation pattern characteristics are measured and shown in the frequency of triple band as required.

Application of SFCL on Bus Tie for Parallel Operation of Power Main Transformers in a Fuel Cell Power Systems

  • Chai, Hui-Seok;Kang, Byoung-Wook;Kim, Jin-Seok;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2256-2261
    • /
    • 2015
  • In the power plant using high temperature fuel cells such as Molten Carbonate Fuel Cell(MCFC), and Solid Oxide Fuel Cell(SOFC), the generated electric power per area of power generation facilities is much higher than any other renewable energy sources. - High temperature fuel cell systems are capable of operating at MW rated power output. - It also has a feature that is short for length of the line for connecting the interior of the generation facilities. In normal condition, these points are advantages for voltage drops or power losses. However, in abnormal condition such as fault occurrence in electrical system, the fault currents are increased, because of the small impedance of the short length of power cable. Commonly, to minimize the thermal-mechanical stresses on the stack and increase the systems reliability, we divided the power plant configuration to several banks for parallel operation. However, when a fault occurs in the parallel operation system of power main transformer, the fault currents might exceed the interruption capacity of protective devices. In fact, although the internal voltage level of the fuel cell power plant is the voltage level of distribution systems, we should install the circuit breakers for transmission systems due to fault current. To resolve these problems, the SFCL has been studied as one of the noticeable devices. Therefore, we analyzed the effect of application of the SFCL on bus tie in a fuel cell power plants system using PSCAD/EMTDC.

A Study on Fault Characteristics of Wind Power in Distribution Feeders (풍력발전(DFIG)의 고압배전선로의 사고특성 해석에 관한 연구)

  • Kim, So-Hee;Kim, Byung-Ki;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1288-1295
    • /
    • 2012
  • Korea Ministry of Knowledge Economy has estimated that wind power (WP) will be occupied 37% in 2020 and 42% in 2030 of the new energy sources, and also green energies such as photovoltaic (PV) and WP are expected to be interconnected with the distribution system because of Renewable Portfolio Standard (RPS) starting from 2012. However, when a large scale wind power plant (over 3[MW]) is connected to the traditional distribution system, protective devices (mainly OCR and OCGR of re-closer) will be occurred mal-function problems due to changed fault currents it be caused by Wye-grounded/Delta winding of interconnection transformer and %impedance of WP's turbine. Therefore, when Double-Fed Induction Generator (DFIG) of typical WP's Generator is connected into distribution system, this paper deals with analysis three-phase short, line to line short and a single line ground faults current by using the symmetrical components of fault analysis and PSCAD/EMTDC modeling.