• Title/Summary/Keyword: DG Capacity

Search Result 54, Processing Time 0.018 seconds

Analysis of Multi-Agent-Based Adaptive Droop-Controlled AC Microgrids with PSCAD: Modeling and Simulation

  • Li, Zhongwen;Zang, Chuanzhi;Zeng, Peng;Yu, Haibin;Li, Hepeng;Li, Shuhui
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.455-468
    • /
    • 2015
  • A microgrid (MG) with integrated renewable energy resources can benefit both utility companies and customers. As a result, they are attracting a great deal of attention. The control of a MG is very important for the stable operation of a MG. The droop-control method is popular since it avoids circulating currents among the converters without using any critical communication between them. Traditional droop control methods have the drawback of an inherent trade-off between power sharing and voltage and frequency regulation. An adaptive droop control method is proposed, which can operate in both the island mode and the grid-connected mode. It can also ensure smooth switching between these two modes. Furthermore, the voltage and frequency of a MG can be restored by using the proposed droop controller. Meanwhile, the active power can be dispatched appropriately in both operating modes based on the capacity or running cost of the Distributed Generators (DGs). The global information (such as the average voltage and output active power of the MG and so on) required by the proposed droop control method to restore the voltage and frequency deviations can be acquired distributedly based on the Multi Agent System (MAS). Simulation studies in PSCAD demonstrate the effectiveness of the proposed control method.

Determining the Optimal Capacities of Distributed Generators Installed in A Stand-alone Microgrid Power System (독립형 마이크로그리드 내 분산전원별 최적용량 결정 방법)

  • Ko, Eun-Young;Baek, Ja-Hyun;Kang, Tae-Hyuk;Han, Dong-Hwa;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.239-246
    • /
    • 2016
  • In recent years, the power demand has been increasing steadily and the occurrence of maximum power demand has been moving from the summer season to the winter season in Korea. And since the control of electric power supply and demand is more important under those situations, a micro-grid system began to emerge as a keyword for the sTable operation of electric power system. A micro-gird power system is composed of various kinds of distributed generators(DG) such as small diesel generator, wind turbine, photo-voltaic generator and energy storage system(ESS). This paper introduces a method to determine the optimal capacities of the distributed generators which are installed in a stand-alone type of microgrid power system based on the fundamental proportion of diesel generator. At first, the fundamental proportion of diesel generator will be determined by changing from 0 to 50 percent. And then we will optimize the capacities of renewable energy resources and ESS according to load patterns. Lastly, after recalculating the capacity of ESS with consideration for SOC constraints, the optimal capacities of distributed generators will be decided.

Effect of Phenolic Acids on Inhibition of Browning of Maillard Reaction Model Solutions (Phenolic acid가 Maillard 반응 모델액의 갈변억제에 미치는 영향)

  • Kwak, Eun-Jung;Lim, Seong-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.20-24
    • /
    • 2007
  • The effects of phenolic acids on inhibition of browning by the Maillard reaction were investigated with a glucose-glutamic acid model for doenjang with citric acid as the antibrowning agent and phenolic acid as its synergist. Five phenolic acids, cinnamic, coumaric, caffeic, hydroxybenzoic, and protocatechuic acids, were used. In order to investigate the antibrowning capacity, 0.1M glucose, 0.1M glutamic acid, 50mM citric acid, and 1mM phenolic acid were dissolved in 1M phosphate buffer (pH 7.0), heated at $50^{\circ}C$ for 24hr in the presence of 0.2mM $FeCl_{2}$, and stored at $4^{\circ}C$ or $30^{\circ}C$ for four weeks. Phenolic acid addition more efficiently inhibited browning during storage at $30^{\circ}C$ than at $4^{\circ}C$, without changes in pH. Hydroxybenzoic acid was the most efficient and increased the antibrowning capacity by 13% compared to sample without phenolic acids. Although caffeic and protocatechuic acids inhibited most the formation of 3-deoxyglucosone or fluorescence, they increased browning by forming colored complexes between two hydroxy groups of phenolic acids and iron ions. Hydroxybenzoic acid will be able to be a useful synergist of citric acid, an antibrowning agent in doenjang, since it is permitted for doenjang.

An Optimal Location of Superconducting Fault Current Limiter in Distribution Network with Distributed Generation Using an Index of Distribution Reliability Sensitivity (신뢰도 민감도 지수를 이용한 복합배전계통 내 초전도한류기의 최적 위치에 관한 연구)

  • Kim, Sung-Yul;Kim, Wook-Won;Bae, In-Su;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.52-59
    • /
    • 2010
  • As electric power demand of customers is constantly increasing, more bulk power systems are needed to install in a network. By development of renewable energies and high-efficient facilities and deregulated electricity market, moreover, the amount of distributed resource is considerably increasing in distribution network consequently. Also, distribution network has become more and more complex as mesh network to improve the distribution system reliability and increase the flexibility and agility of network operation. These changes make fault current increase. Therefore, the fault current will exceed a circuit breaker capacity. In order to solve this problem, replacing breaker, changing operation mode of system and rectifying transformer parameters can be taken into account. The SFCL(Superconducting Fault Current Limiter) is one of the most promising power apparatus. This paper proposes a methodology for on optimal location of SFCL. This place is defined as considering the decrement of fault current by component type and the increment of reliability by customer type according to an location of SFCL in a distribution network connected with DG(Distributed Generation). With case studies on method of determining optimal location for SFCL applied to a radial network and a mesh network respectively, we proved that the proposed method is feasible.