• Title/Summary/Keyword: DFT Spread OFDM

Search Result 10, Processing Time 0.02 seconds

Design and Performance Evaluation of the DFT-Spread OFDM Communication System for Phase Noise Compensation and PAPR Reduction (위상 잡음 보상과 PAPR 저감을 고려한 DFT-Spread OFDM 통신 시스템 설계와 성능 평가)

  • Li Ying-Shan;Kim Nam-Il;Kim Sang-Woo;Ryu Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.7 s.110
    • /
    • pp.638-647
    • /
    • 2006
  • Recently, the DFT-Spread OFDM has been studied for the PAPR reduction. However, the DFT-Spread OFDM produces more ICI and SCI problems than OFDM because phase offset mismatch of the DFT spreading code results from the random phase noise in the oscillator. In this paper, at first, phase noise influence on the DFT-Spread OFDM system is theoretically analyzed in terms of the BER performance. Then, the conventional ICI self-cancellation methods are discussed and two kinds of ICI self-cancellation methods are newly proposed. Lastly, a new DFT-Spread OFDM system which selectively adopts the ICI self-cancellation technique is proposed to resolve the interference problem and PAPR reduction simultaneously. Proposednew DFT-Spread OFDM system can minimize performance degradation caused by phase noise, and still maintain the low PAPR property. Among the studied methods, DFT-Spread OFDM with data-conjugate method or newly proposed symmetric data-conjugate method show the significant performance improvements, compared with the DFT-Spread OFDM without ICI self-cancellation schemes. The data-conjugate method is slightly better than symmetric data-conjugate method.

DFT-spread OFDM Communication System for the Power Efficiency and Nonlinear Distortion in Underwater Communication (수중통신에서 비선형 왜곡과 전력효율을 위한 DFT-spread OFDM 통신 시스템)

  • Lee, Woo-Min;Ryn, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.777-784
    • /
    • 2010
  • Recently, the necessity of underwater communication and demand for transmitting and receiving various data such as voice or high resolution image data are increasing as well. The performance of underwater acoustic communication system is influenced by characteristics of the underwater communication channels. Especially, ISI(inter symbol interference) occurs because of delay spread according to multi-path and communication performance is degraded. In this paper, we study the OFDM technique to overcome the delay spread in underwater channel and by using CP, we compensate for delay spread. But PAPR which OFDM system has problem is very high. Therefore, we use DFT-spread OFDM method to avoid nonlinear distortion by high PAPR and to improve efficiency of amplifier. DFT-spread OFDM technique obtains high PAPR reduction effect because of each parallel data loads to all subcarrier by DFT spread processing before IFFT. In this paper, we show performance about delay spread through OFDM system and verify method that DFT spread OFDM is more suitable than OFDM for underwater communication. And we analyze performance according to two subcarrier mapping methods(Interleaved, Localized). Through the simulation results, performance of DFT spread OFDM is better about 5~6dB at $10^{-4}$ than OFDM. When compared to BER according to subcarrier mapping, Interleaved method is better about 3.5dB at $10^{-4}$ than Localized method.

3GPP LTE 및 LTE-Advanced 시스템의 상향 링크 전송 기술 표준화 동향

  • Jeong, Byeong-Jang
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.35-42
    • /
    • 2010
  • DFT spread OFDM은 OFDM 방식의 주요한 장점을 보유하면서 낮은 cubic metric 특성을 가지는 전송 방식이다. 이러한 특성으로 인해 DFT spread OFDM은 3GPP LTE 시스템의 상향 링크 기본 전송 방식으로 채택되었으며, 3GPP LTE-Advanced 시스템에서도 이의 확장된 형태의 전송 기술이 기반이 되어 표준화가 진행되고 있다. 또한 LTE-Advanced 상향 링크에서는 성능 향상을 위해 MIMO 전송을 지원하는데, MIMO 전송에 있어서도 DFT spread OFDM의 낮은 cubic metric 특성을 유지하기 위해, 하향 링크 MIMO 방식과는 다소 다른 형태로 표준이 진행되고 있다. 본 고에서는 이러한 관점에서 3GPP LTE 시스템의 상향 링크 전송 기술인 DFT spread OFDM 기술을 소개하고, LTE-Advanced 시스템의 상향 링크 표준화 동향을 소개한다.

Comparison of Time and Frequency Resources of DFT-s-OFDM Systems Using the Zero-Tail and Unique Word (Zero Tail과 Unique Word를 사용하는 DFT-s-OFDM 시스템들의 시간과 주파수 자원 비교)

  • Kim, Byeongjae;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1715-1720
    • /
    • 2016
  • In the upcoming 5-generation mobile communication system, various techniques for improving the power efficiency and spectral efficiency have been proposed. 5G mobile communication system also have been studied a lot of multi-carrier-based modulation techniques like the 4G mobile communication system. In this paper, we analyzed the conventional system structure of the Zero-tail DFT-s-OFDM and UW (Unique Word) -DFT-s-OFDM system based on DFT-s-OFDM system in these techniques. UW and zero are added and used each system, and CP is removed. the result of quality of systems for simulation, OOB(Out of Band) power of Zero-tail DFT-s-OFDM and UW-DFT-s-OFDM use the less time resource as long as CP length, also both systems are reduced about 11dB than DFT-s-OFDM system. In these result, Zero-tail DFT-s-OFDM and UW-DFT-s-OFDM system are more effective than DFT-s-OFDM system.

FH DFT-Spreading OFDM System for the Effective Channel Estimation and PAPR Reduction in Jamming Channel (재밍 채널에서 효과적 채널 추정과 PAPR 저감을 위한 주파수 도약 DFT-Spreading OFDM 시스템)

  • Kim, Jang-Su;Ryu, Heung-Gyoon;Lee, Seung-Jun;Ko, Dong-Kuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.796-804
    • /
    • 2010
  • It is important to use the comb type pilot allocation for the continuous channel and efficient processing. And DFT-spreading OFDM is used a lot to solve high PAPR problem of OFDM system. However, PAPR is increased again when comb type pilot is used to estimate channel characteristics. So, in this paper, we employ a new SLM method to DFT-spreading OFDM system to reduce increased high PAPR. And we suggest an effective method to transmit side information without additional bandwidth. Pilot and side information must be preserved from jamming or intentional interferences since those are very important in DFT spread OFDM system using SLM. So, in this paper, we like to analyze and simulate the performance of DFT spread OFDM system based on SLM against jamming signal. To remedy the vulnerable shortcomings of DFT spread OFDM about jamming or intentional interferences, we employ FH(Frequency Hopping) method and analyze system performance under the several jamming conditions such as MTJ(Multi Tone Jamming) and PBJ(Partial Band Jamming).

Design of Improved DFT-s-SSB OFDM and Spectral Efficiency in Multiuser Environment (개선된 DFT-s-SSB OFDM 설계와 다수 사용자 환경에서의 스펙트럼 효율)

  • An, Changyoung;Lee, Jungu;Jang, Kyeongsoo;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.192-199
    • /
    • 2018
  • This paper proposes an improved discrete Fourier transform spread single sideband(DFT-s-SSB) orthogonal frequency division multiplexing(OFDM) system that solves the problems of conventional DFT-s-SSB OFDM systems. Conventional DFT-s-SSB systems use pulse amplitude modulation(PAM) for applying SSB modulation. The higher the modulation level, the worse is the BER performance. Further, transmission is possible only through the lower sideband(LSB) spectrum. When transmitting using the LSB and upper sideband(USB) spectra simultaneously, interference occurs and spectrum recovery is not performed correctly. To solve this problem, the proposed system applies the 2/3 convolution coding to improve the bit error rate(BER) performance, adjusts the DFT size, and selects the USB spectrum to utilize the remaining spectrum resources. In addition, when using this system in an environment that supports multiuser or limited bandwidth, it uses only half of the spectrum; therefore, it can utilize the remaining spectrum resources and improve the spectral efficiency.

Compensation of Phase Noise and IQ Imbalance in the OFDM Communication System of DFT Spreading Method (DFT 확산 방식의 OFDM 통신 시스템에서 위상잡음과 직교 불균형 보상)

  • Ryu, Sang-Burm;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • DFT-spread OFDM(Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing) is very effective for solving the PAPR(Peak-to-Average Power Ratio) problem. Therefore, the SC-FDMA(Single Carrier-Frequency Division Multiple Access) which is basically same to the DFT spread OFDM was adopted as the uplink standard of the 3GPP LTE ($3^{rd}$ Generation Partnership Project Long Term Evolution). Unlike the ordinary OFDM system, the SC-FDMA using DFT spreading method is vulnerable to the ICI(Inter-Carrier Interference) problem caused by the phase noise and IQ(In-phase/Quadrature) imbalance and effected FDE(Frequency Domain Equalizer). In this paper, the ICI effects from the phase noise and IQ imbalance which can be problems in uplink transmission are analyzed according the back-off level of HPA. Next, we propose the equalizer algorithm to remove the ICI effects. This proposed equalizer based on the FDE can be considered as up-graded and improved version of PNS(Phase Noise Suppression) algorithm. This proposed equalizer effectively compensates the ICI resulting from the phase noise and IQ imbalance. Finally, through the computer simulation, it can be shown that about SNR=14 dB is required for the $BER=10^{-4}$ after ICI compensation when the back-off is 4.5 dB, $\varepsilon=0.005$, $\phi=5^{\circ}$, and $pn=0.06\;rad^2$.

Design and implementation of the synchronization circuit for OFDM system without synchronization preambles (동기 프리엠블이 없는 OFDM 시스템의 동기회로 설계 및 구현)

  • 남우춘;한영열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.1045-1057
    • /
    • 1997
  • In this paper, we propose an algorithm of block synchronization that uses data withoug synchronization preambles. Block synchronization systems is implemented using the DSP chip employing the proposed algorithm. The data spread of the DFT blocks is proportional to the offset of DFT block and this information is used to achieve the block synchronization in the receiver. The initial bleock synchronization and the clock synchronization between transmitter and receiver are achieved using the early-late removal of the guard interval. The hardware implmentation is carried out using the DSP chip TM320C30 to verify the proposed block synchronization algorithm with the data rate 1200bps. The DSP chip calculates the spread of the 128 complex FFT in the receiver with the system clock 30MHz. It is believed that the proposed synchronization algorithm can be used in the design of OFDM block synchronization with the high processing DSP chip.

  • PDF

Access timing offsets-resilient SC-FDMA (접속동기 오차에 강한 SC-FDMA 기법)

  • Kim, Bong-Seok;Choi, Kwonhue
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.26-29
    • /
    • 2012
  • In this paper, we propose a Single Carrier Frequency Division Multiple Access(SC-FDMA) scheme with greatly enhanced tolerance of timing offset among the users. The type of the proposed scheme is similar to code spread Multiple Carrier Direct Spread Code Division Multiple Access(MC DS CDMA). The proposed scheme performs partial Discrete Fourier Transform(DFT) in order to solve high Peak to Average Power Ratio(PAPR) of the MC DS CDMA before Inverse Fast Fourier Transform(IFFT). Exploiting the property Properly Scrambled Walsh-Hadamard(PSW) code has zero correlation despite ${\pm}1$ chip timing offset, the proposed scheme achieves Multiple Access Interference free performance with the timing offset up to ${\pm}1$ OFDM symbol duration with low PAPR. In contrast, the other existing schemes in comparison undergo severe performance degradation even with small timing offset in multipath fading channel.

Performance Analysis and Compensation of FH/SC-FDMA System for the High-Speed Communication in Jamming Channel (재밍 채널에서 고속 통신을 위한 주파수 도약 SC-FDMA 통신 시스템의 성능 분석과 보상)

  • Kim, Jang-Su;Jo, Byung-Gak;Baek, Gwang-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.551-561
    • /
    • 2009
  • FH system is very robust to the jamming interference. OFDM system is very good for the high speed communication system. But, it has high PAPR. SC-FDMA system based on OFT-spread OFDM was proposed to reduce high PAPR. Therefore, in this paper, we like to introduce the FH system into SC-FDMA system, which can be best solution to the jamming hostile environment and for the high power efficiency. Also, OFDM is very sensitive to ICI. Especially, ICI generated by frequency offset and phase noise breaks the orthogonality among sub-carriers, which seriously degrades the system performance. We analyze the performance of the FH SC-FDMA system in the PBJ and MTJ channel. In this paper, the ICI effects caused by phase noise, frequency offset and Doppler effects are analyzed and we like to propose the PNFS algorithm in the equalizer to compensate the ICI influences. Through the computer simulations, we can confirm the performance improvement.