• Title/Summary/Keyword: DFSS

Search Result 72, Processing Time 0.03 seconds

A Study on Design for Six Sigma Methodology for Aircraft Industry (항공 산업의 DFSS 적용방법에 관한 연구)

  • Sung, Su-Gyeong;Yoon, Hee-Kweon;Kwag, Sang-Hyug;Byun, Jai-Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.3
    • /
    • pp.316-326
    • /
    • 2012
  • Purpose: In this paper, a Design for Six Sigma(DFSS) methodology based on DMADV(Define-Measure-Analyze-Design-Verify) roadmap is presented. Methods: DFSS tools are given for each DMADV phase which is suitable for the aircraft development process. A cost reduction case study of a navigation simulation is demonstrated. Results: DFSS roadmap are presented with implementation tools for each phase. Conclusion: We propose a DFSS methodology which can benefit the design and development personnel to implement DFSS not only in aircraft industry but also in other order-based industries in general.

A Program Level Application of Design for Six Sigma in the Aircraft Industry

  • Yoon, Hee-Kweon;Byun, Jai-Hyun
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.3
    • /
    • pp.232-237
    • /
    • 2011
  • Design for Six Sigma (DFSS) has been implemented in many companies to enhance their business performance and customer satisfaction. However, DFSS has not been widely applied to the aircraft industry which operates large, complex development programs. In this paper, the characteristics of an aeronautical product development program are analyzed to figure out the limitations of current DFSS methodology and the prerequisite to deployment of DFSS at the program level is suggested.

DFSS case study for the automobile safety regulation FMVSS201 (자동차 안전규정 대응을 위한 DFSS 적용사례)

  • Park, Jong-Geun;Baik, Jai-Wook
    • Journal of Applied Reliability
    • /
    • v.10 no.3
    • /
    • pp.161-169
    • /
    • 2010
  • Automobiles have become part of our lives in modern society. But since they can be detrimental once problems occur on the road safety requirements are stringent. In this paper DFSS procedure is applied to the establishment of headliner safety. Specifically, IDDOV is employed where problems are identified, areas for development clarified, optimization realized, and finally optimal conditions verified at the final stage.

The Study of Influence Factor of Head Restraints on the Whiplash by using DFSS (DFSS 기법을 이용한 후방 추돌 시 경부 상해 감소를 위한 머리지지대 인자의 영향성 연구)

  • Oh, Hyungjoon;Seo, Sangjin;Yoo, Hyukjin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.2
    • /
    • pp.5-10
    • /
    • 2012
  • Whiplash is the most frequent injury among occupants in low speed rear-end car collision. The aim of this paper is to analyze thecorrelation between influence parameters of head restraints and whiplash injury criteria.In this paper, DFSS (Design for Six Sigma) method is used for optimum design of head restrains. Four control factors of head restraints have selected by function matrix method. The effects of the control factors have been experimentally evaluated by using a sled pulse from 16km/h relative velocity which is suggested by KNCAP (Korean New Car Assessment Program). In order to reduce the noise factors of dynamic tests, whiplash tests were repeated twice. By using DFSS, the correlation between control factors and injury criteria has been comprehended.

QUALITY IMPROVEMENT FOR BRAKE JUDDER USING DESIGN FOR SIX SIGMA WITH RESPONSE SURFACE METHOD AND SIGMA BASED ROBUST DESIGN

  • Kim, H.-S.;Kim, C.-B.;Yim, H.-J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.193-201
    • /
    • 2003
  • The problem of brake judder is typically caused by defects of quality manufacturing. DFSS (Design for six sigma) is a design process for quality improvement. DFSS will result in more improved but less expensive quality products. This paper presents an implementation of DFSS for quality improvement of the brake judder of heavy-duty trucks. Carrying out 5 steps of DFSS, the major reasons for defects of quality are found. The numerical approximation of the brake system is derived by means of the response surface method. Its quality for brake judder is improved by using the sigma based robust design methodology. Results are compared between the conventional deterministic optimal design and the proposed sigma based robust design. The proposed one shows that manufacturing cost may increase as the quality level increase. The proposed one, however, is more economical in aspect of the overall cost since the probability of failure dramatically goes down.

The Development of pallet based on the DFSS Methodology and Value Engineering for Lighter Logistics (식스 시그마 DFSS 와 VE 를 이용한 경량 파렛트 설계)

  • Yoon, Min-Su;Whang, Jeong-Feel
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1334-1337
    • /
    • 2007
  • A steel pallet to carry lighter logistic articles is developed based on the DFSS(design for Six Sigma) methodology. Combining the conventional DFSS(Design For Six Sigma) methodology with that of VE(Value Engineering) is the novel feature of this paper to achieve maximum cost reduction. In this paper, systematical steps to achieve the required structural spec's are presented by conventional DMEDI(Define-Measure-Explore-Develop-Implement) process. To imply the target costing, evaluation of functions consisting of the pallet has been performed by value methodology. Then best design concept is selected in the Explore step, following structural optimization utilizing FEM. Finally the performance of prototype is investigated by pilot test in the Implement step. The developed steel pallet is being commercialized in the fields of automated ware house.

  • PDF

A Study of Lean DFSS through the Creative Value Design

  • Lee, Kang-Koon;Ree, Sang-Bok;Park, Young-H.
    • International Journal of Quality Innovation
    • /
    • v.6 no.3
    • /
    • pp.121-131
    • /
    • 2005
  • Six Sigma uses DMAIC (Define, Measure, Analyze, Improve, Control) methodology as the process of a solving problem. Enterprises already propelling Six Sigma successfully, such as Motorola, GE and consulting companies, also traditionally propose DMAIC methodology. But, from activating Six Sigma, enterprises and Six Sigma-consulting companies propose Six Sigma methodology matching indirection part of office and R&D part. As an example, DFSS (Design For Six Sigma) is part of R&D application in GE. This study investigates Six Sigma methodology corresponding to the Right Process of the kernel factor. Especially for the optimum design of R&D, the study revises the definition of DFSS and the general organization through Lean DFSS methodology research and analysis.

A Study of Lean DFSS through the 4th Generation R&D Strategy - Creative Value Design - (4세대 R&D 전략을 통한 Lean DFSS 방법론에 관한 실증적 연구 - 창의적 가치설계를 중심으로 -)

  • Lee, Kang-Koon;Ree, Sang-Bok
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.04a
    • /
    • pp.431-436
    • /
    • 2006
  • 6 Sigma uses DMAIC (Define, Measure, Analyze, Improve, Control) methodology as process of solving problem. Enterprise already propelling successfully 6 sigma such as Motorolla, GE and consulting companies leading 6 sigma also propose DMAIC methodology traditionally. But from making 6 sigma activated, enterprises and 6 sigma consulting companies propose 6 sigma methodology matching office indirection part and research and development part. As the forward example, DFSS(Design For Six Sigma) is R&D part application in GE. This study investigates 6 sigma methodology corresponding to Right Process of the kernel factor. Especially for optimum design of the R&D part, revise DFSS definition and general concept organization through Lean DFSS methodology research and analysis.

  • PDF

A Design for Six Sigma: A Robust Tool in Systems Engineering Process

  • Yoon, Hee-Kweon;Byun, Jai-Hyun
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.346-352
    • /
    • 2012
  • While systems engineering has been widely applied to complex system development, some evidences are reported about major budget and schedule overruns in systems engineering applied. On the other hand, many organizations have been deploying Design for Six Sigma (DFSS) to build Six Sigma momentums in the area of design and development for their products and processes. To explore the possibility of having a DFSS complement systems engineering process, this process reviews the systems engineering with their categories of effort and DFSS with its methodologies. A comparison of the systems engineering process and DFSS indicates that DFSS can be a complement to systems engineering for delivering higher quality products to customers faster at a lower cost. We suggest a simplified framework of systems engineering process, that is, PADOV which was derived from the generic systems engineering process which has been applied to the development of T-50 advanced supersonic trainer aircraft by Korea Aerospace Industries (KAI) with technical assistance of Lockheed Martin. We demonstrated that each phase of PADOV framework is comprehensively matched to the pertinent categories of systems engineering effort from various standards.

The robust design of Ball-Stop part for power shift for vehicle with more heaver than 5 ton by using DFSS (DFSS 를 적용한 5 톤 이상 상용차용 변속배력장치의 BALL-STOP 구조부 강건설계)

  • Chung W.J.;Jung D.W.;Song T.J.;Cho Y.D.;Yoon C.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1664-1667
    • /
    • 2005
  • The main function of Ball-Stop part is to operate power shift for vehicle with more than 5 ton when a driver changes gear using suitable force. This paper presents the implementation of a DFSS(Design For Six Sigma) for robust design of Ball-Stop part of power shift. The factors influencing Ball-Stop part performance is derived to find control factor. Based on this factor, contact force between head and detent pin analysis is performed to get optimal factor is analyzed and compared with contact force test result to verify reliability of design. This makes clear the reason why the proposed one is necessary and the role of DFSS.

  • PDF