• Title/Summary/Keyword: DFPR

Search Result 2, Processing Time 0.018 seconds

The Effects of Dichloromethane fraction of Phlomodis Radix(DFPR) on differentiation of Mouse Calvarial Cell (속단의 dichloromethane 분획물이 마우스 두개골 세포의 분화에 미치는 영향)

  • Kim, Dong-Jin;Yun, Jeong-Ho;Jung, Ui-Won;Yoo, Yun-Jung;Kim, Yun-Chul;You, Hyung-Keun;Kim, Chong-Kwan;Choi, Sung-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.4
    • /
    • pp.791-805
    • /
    • 2004
  • The purpose of this study was to evaluate the effects of DFPR on differentiation of mouse calvarial cell in vitro, to examine the possibility for periodontal regeneration. $10{\mu}g/ml$ of DFPR was used as experimental concentration. osteogenic medium only was assigned as control, Experimental 1 was supplemented with 10nM dexamethasone, Experimental 2 with $10{\mu}g/ml$ DFPR and Experimental 3 with l0nM dexamethasone + $10{\mu}g/ml$ DFPR. cellular activity was evaluated by MTT method at 8, 12, 16 days, expression of mRNA of ALP, osteopontin, osteocalcin, collagen type-l was detected by RT-PCR method at 4, 8, 12, 16 days of culture. extent of mineralization was observed by Von Kossa staining at 16 day of culture. The results are as follows 1)Any acceleration of differentiation was not observed at expression of differentiation marker, 2) Decrease in expression of extracelluar matrix and in bone nodule formation was observed The results suggested that DFPR have negative effect on the rate of differentiation on rat calvarial cell, decrease extracelluar matrix formation ,decrease bone nodule formation. Ongoing studies are necessary in order to determine effect of DFPR on periodontal regeneration.

Change of Phoria and Subjective Symptoms after Watching 2D and 3D Image (2D와 3D 영상 시청 후 나타난 사위도 및 자각증상의 변화)

  • Kim, Dong-Su;Lee, Wook-Jin;Kim, Jae-Do;Yu, Dong-Sik;Jeong, Eui Tae;Son, Jeong-Sik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.185-194
    • /
    • 2012
  • Purpose: The changes of phoria and subjective asthenopia before and after viewing were compared based on 2D image and two ways of 3D images, and presented for references of 3D image watching and production. Methods: Change in phoria was measured before and after watching 2D image, 3D-FPR and 3D-SG images for 30 minutes with a target of 41 university students at 20-30 years old (male 26, female 15). Paired t-test and Pearson correlation between changed phoria and subjective symptoms which were measured using questionnaires were evaluated by before and after watching each images. Results: Right after watching 2D image, exophoria was increased by 0.5 $\Delta$, in distance and near, but it was not a significant level. Right after watching 3D image, exophoria was increased by 1.0~1.5 $\Delta$, and 1.5~2.0 $\Delta$, in distance and near, respectively when compared with before watching. In the significant level, exophoria tended to increase. Changes in near was increased more by 0.5 $\Delta$, compared with those in distance. Changes based on way of 3D-FPR and 3D-SG image were less than 0.5 $\Delta$, and there was almost no difference. In terms of visual subjective symptoms, eye strain was increased in 3D image compared with that in 2D image. In addition, there was no difference depending on way of image. In terms of Pearson correlation between phoria change and eye strain, as exophoria was increased, eye strain was increased. Conclusions: Watching 3D image increased eye strain compared with watching 2D image, and accordingly exophoria tended to increase.