• Title/Summary/Keyword: DFM

Search Result 72, Processing Time 0.03 seconds

Effects of Supplementing Aqueous Direct-Fed Microbials on In Vitro Fermentation and Fibrolytic Enzyme Activity in the Ruminant Nutrition (반추가축영양에 있어서 액상미생물제제의 첨가가 In Vitro 발효성상과 섬유소분해효소활성에 미치는 영향)

  • Lee, S.H.;Seo, I.J.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.789-804
    • /
    • 2005
  • This study was conducted to determine effects of supplementation levels of aqueous direct-fed microbials (DFM; Bacillus spp.) to TMR(exp. 1.) and aqueous DFM addition under the various ratios of starch and cellulose(exp. 2.) on ruminal fermentation and fibrolytic enzyme activity. In experiment 1, ruminal fluids taken from rumen-cannulated Holstein cows were incubated during 24 hr by using TMR as substrates. Aqueous DFM was applied at a rate of 0, 0.025 and 0.05%, respectively. The pH of 0.025% treatment was not significantly different from that of control at 6 and 9 hr, but it was significantly lower (P<0.05) than 0.05% treatment. Concentrations of ammonia-N and VFAs were not affected by supplementing aqueous DFM. The A:P ratio of 0.05% treatment was significantly increased(P<0.05) by supplementation of aqueous DFM as compared with that of control at 24 hr. Although overall fibrolytic enzyme activities were not significantly affected by supplementing aqueous DFM, CMCase(carboxymethylcellulase) activity showed significant increase(P<0.05) compared to control at 6hr. However, the xylanase activity of 0.05% treatment significantly decreased(P<0.05) at 12 hr due to the application of aqueous DFM. There was no significant difference for in vitro dry matter disappearance among treatments. In experiment 2, ruminal fluids were incubated under the condition of various ratios of starch to cellulose(90:10, 70:30, 50:50, 30:70 and 10:90) with or without aqueous DFM(0.025%). Ruminal pH was unaffected by the addition of aqueous DFM, however, as increased level of starch, ruminal pH partially showed significant decrease(P<0.05). Ammonia-N concentration was not affected by aqueous DFM and ratio of starch and cellulose. On 9 hr incubation, DFM addition at a ratio of 70:30 showed significantly (P<0.05) lower value of ammonia-N(35.65 mg/dL) than that(65.05 mg/dL) of control. Concentrations of VFAs were significantly increased(P<0.05) by aqueous DFM addition compared with control at the same ratio on 6 hr incubation. The overall CMCase activity was not affected by aqueous DFM addition. However, the xylanase activity by aqueous DFM partially showed significant differences at the ratios of 90:10, 30:70 and 10:90. Our results indicated that supplementation of aqueous DFM did not significantly improve in vitro fermentation and fibrolytic enzyme activity. In addition, the DFM utilized in this study did not show consistent results by having various effects on ruminal fermentation under different feeding regimens.

Effects of Direct-fed Microbial and Pine Cone Extract on Carcass Traits and Meat Quality of Hanwoo (Korean Native Cattle)

  • Muhlisin, Muhlisin;Song, Chang Soo;Rhee, Yong Joon;Song, Young Han;Lee, Sung Ki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.722-730
    • /
    • 2016
  • The carcass traits and meat quality of Hanwoo (Korean native cattle) whose diets were supplemented with direct-fed microbial (DFM) and pine cone extract (PCE) were evaluated. Twenty head of Hanwoo steers were divided equally into four groups and for a period of 6 months were given different diets: One group was fed a basal diet as control (CON), the other three groups were fed a basal diet supplemented with DFM-1%, DFM+PCE-1% and DFM+PEC-3%, respectively. DFM+PCE3% diet resulted the lowest carcass quality grade. The loins of DFM-1% contained higher moisture and lower fat than did the loins from the CON group. The crude protein content of DFM+PCE-3% group was significantly higher than that of the other groups. The water holding capacity and Warner-Bratzler shear force of the DFM+PCE-1% and 3% groups were lower than those of the CON and DFM-1% groups. The DFM-1% and 3% groups contained lower saturated fatty acid, higher unsaturated fatty acid, mono-unsaturated fatty acid, and poly-unsaturated fatty acid than did CON and DFM+PCE 1% group. Moreover, the n6:n3 ratios of DFM-1% and DFM+PCE-1% and 3% groups were slightly lower than that of the CON group. Thus we concluded that DFM and PCE supplementation resulted healthier Hanwoo beef with lower fat content and n6:n3 ratio.

Effects of Complex Direct-Fed Microbial Supplementation on Growth Performance and Nutrient Digestibility for Broilers (복합생균제의 급여가 육계의 성장능력과 영양소 소화율에 미치는 영향)

  • 김인호;손경승;홍종욱;권오석;민병준;이원백;박용하;이인선;한영근
    • Korean Journal of Poultry Science
    • /
    • v.31 no.2
    • /
    • pp.85-91
    • /
    • 2004
  • This study was conducted to investigate the effects of dietary direct-fed microbials(DFM) on the growth performance and nutrient digestibility in broiler chickens. A total of two hundred eighty eight broiler chickens were randomly allocated into six treaments with four replications and fed for five weeks. Dietary treatments included 1) CON (basal diet), 2) DFM-1(basal diet + 0.2% Enterococcus sp. & Lactobacillus reuteri), 3) DFM-2(basal diet + 0.2% Enterococcus sp. & Lactobacillus plantarum), 4) DFM-3(basal diet + 0.2% Enterococcus sp. & Lactobacillus reuteri & Lactobacillus plantarum), 5) DFM-4(basal diet + 0.2% Enterococcus sp. & Lactobacillus reuteri & Lactobacillus plantarum & Yeast), 6) DFM-5(basal diet + 0.2% Enterococcus sp. & Lactobacillus reuteri & Lactobacillus plantarum & Bacillus subtilis). During the period of 1∼3weeks, average daily gain (ADG) and Feed/Gain were not significant different among treatments. In the later(3∼5weeks) and overall period(l∼ 5weeks), ADG and Feed/Gain tended to be improved in DFM treatments compared to the control. However, there were no significant differences among DFM complexes and between control and DFM treatments. The broilers fed DFM-3 diet was showd poor growth performance compared to the broilers fed DFM-l diet and similar to the broilers fed DFM-2 diet but there was no significant differences. The treatments of DFM-4 diet added Yeast and DFM-5 added Bacillus subtilis were improved in ADG and Feed/gain but no significant differences were found and also there was no specific DFM treatments in experiment period. In digestibility, the broiler chicks fed DFM treatments tended to improve N digestibility compared to control treatment. However, they were not significantly different among the treatments. In conclusion, DFM tended to improve growth performance in later stage of broiler.

Direct-fed Microbials for Ruminant Animals

  • Seo, Ja-Kyeom;Kim, Seon-Woo;Kim, Myung-Hoo;Upadhaya, Santi D.;Kam, Dong-Keun;Ha, Jong-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.12
    • /
    • pp.1657-1667
    • /
    • 2010
  • Direct-fed microbials (DFM) are dietary supplements that inhibit gastrointestinal infection and provide optimally regulated microbial environments in the digestive tract. As the use of antibiotics in ruminant feeds has been banned, DFM have been emphasized as antimicrobial replacements. Microorganisms that are used in DFM for ruminants may be classified as lactic acid producing bacteria (LAB), lactic acid utilizing bacteria (LUB), or other microorganisms including species of Lactobacillus, Bifidobacterium, Enterococcus, Streptococcus, Bacillus and Propionibacterium, strains of Megasphaera elsdenii and Prevotella bryantii and yeast products containing Saccharomyces and Aspergillus. LAB may have beneficial effects in the intestinal tract and rumen. Both LAB and LUB potentially moderate rumen conditions and improve feed efficiency. Yeast DFM may reduce harmful oxygen, prevent excess lactate production, increase feed digestibility, and improve fermentation in the rumen. DFM may also compete with and inhibit the growth of pathogens, stimulate immune function, and modulate microbial balance in the gastrointestinal tract. LAB may regulate the incidence of diarrhea, and improve weight gain and feed efficiency. LUB improved weight gain in calves. DFM has been reported to improve dry matter intake, milk yield, fat corrected milk yield and milk fat content in mature animals. However, contradictory reports about the effects of DFM, dosages, feeding times and frequencies, strains of DFM, and effects on different animal conditions are available. Cultivation and preparation of ready-to-use strict anaerobes as DFM may be cost-prohibitive, and dosing methods, such as drenching, that are required for anaerobic DFM are unlikely to be acceptable as general on-farm practice. Aero-tolerant rumen microorganisms are limited to only few species, although the potential isolation and utilization of aero-tolerant ruminal strains as DFM has been reported. Spore forming bacteria are characterized by convenience of preparation and effectiveness of DFM delivery to target organs and therefore have been proposed as DFM strains. Recent studies have supported the positive effects of DFM on ruminant performance.

Effect of Bacillus amyloliquefaciens-based Direct-fed Microbial on Performance, Nutrient Utilization, Intestinal Morphology and Cecal Microflora in Broiler Chickens

  • Lei, Xinjian;Piao, Xiangshu;Ru, Yingjun;Zhang, Hongyu;Peron, Alexandre;Zhang, Huifang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.239-246
    • /
    • 2015
  • The present study was conducted to evaluate the effect of the dietary supplementation of Bacillus amyloliquefaciens-based direct-fed microbial (DFM) on growth performance, nutrient utilization, intestinal morphology and cecal microflora in broiler chickens. A total of two hundred and eighty eight 1-d-old Arbor Acres male broilers were randomly allocated to one of four experimental treatments in a completely randomized design. Each treatment was fed to eight replicate cages, with nine birds per cage. Dietary treatments were composed of an antibiotic-free basal diet (control), and the basal diet supplemented with either 15 mg/kg of virginiamycin as antibiotic growth promoter (AGP), 30 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 30) or 60 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 60). Experimental diets were fed in two phases: starter (d 1 to 21) and finisher (d 22 to 42). Growth performance, nutrient utilization, morphological parameters of the small intestine and cecal microbial populations were measured at the end of the starter (d 21) and finisher (d 42) phases. During the starter phase, DFM and virginiamycin supplementation improved the feed conversion ratio (FCR; p<0.01) compared with the control group. For the finisher phase and the overall experiment (d 1 to 42) broilers fed diets with the DFM had better body weight gain (BWG) and FCR than that of control (p<0.05). Supplementation of virginiamycin and DFM significantly increased the total tract apparent digestibility of crude protein (CP), dry matter (DM) and gross energy during both starter and finisher phases (p<0.05) compared with the control group. On d 21, villus height, crypt depth and villus height to crypt depth ratio of duodenum, jejunum, and ileum were significantly increased for the birds fed with the DFM diets as compared with the control group (p<0.05). The DFM 30, DFM 60, and AGP groups decreased the Escherichia coli population in cecum at d 21 and d 42 compared with control group (p<0.01). In addition, the population of Lactobacillus was increased in DFM 30 and DFM 60 groups as compared with control and AGP groups (p<0.01). It can be concluded that Bacillus amyloliquefaciens-based DFM could be an alternative to the use of AGPs in broilers diets based on plant protein.

Effects of Feeding Lactic Acid Bacteria-Based Direct-Fed Microbial Complex on Growth Performance and Blood Characteristics in Growing Pigs (Lactic acid bacteria 계열의 복합 생균제가 육성돈의 성장 능력과 혈액 특성에 미치는 영향)

  • Yoo, Jong-Sang;Kim, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1416-1420
    • /
    • 2006
  • This study was conducted to investigate the effects of direct-fed microbial(DFM) complex on the growth performance and blood characteristics in growing pigs. A total of 72 growing pigs with an average initial BW of 24.64$\pm$2.46 kg were used in 28 days experiment trial. There were six pens per treatment with three pigs per pen. Dietary treatments included 1)NC(basal diet; antibiotics free diet), 2) PC(NC diet with 0.1% antibiotics; chlortetracycline 0.05% +neomycin 0.05%), 3)DFM0.1 UC diet + 0.1% DFM)and 4)DFM0.3 (NC diet + 0.3% DFM). During the entire experimental period, hnG(Average daily gain) was increased NC treatment compared with NDFM0.1 and NDFM0.3 treatments. However, there was not significantly effect by treatments(P>0.05). Also, there was not significantly effect in ADFI(average daily feed intake) among the treatments. Blood characteristics(RBC, WBC and IgG) tended to improved, however, no significant differences were observed(P>0.05). In our experiment, DFM had not effects on growth performance and blood characteristics in growing pigs.

  • PDF

- A Component-Based Manufacturing Information Systems for DFM Using UML - (UML을 이용한 컴포넌트 기반의 DFM을 위한 제조정보 시스템의 개발)

  • 김진대;이홍희
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.2
    • /
    • pp.75-85
    • /
    • 2003
  • Manufacturing firms have adapted seriously the Design for Manufacture and Assembly (DFMA) techniques which consider concurrently all factors related to the product development by using effective communications and sharing of information on product development processes. This study performed modelling and characterizing the data related to product manufacturing information for Design for Manufacture(DFM) evaluation and analysis. It adapted component-based development method for communicating and managing manufacturing information among distributed manufacturing organizations. Introducing component-based development offers safety and speed to network based system. This development using Unified Modelling Language(UML) provides efficient way for reconstruction and distribution of applications. Also, the integration of database and component into the internet environment enables to communicate and manage effectively manufacturing information for DFM evaluation and analysis at any place in the world. Therefore this system can make it more reasonable that evaluating, analyzing, and effective decision making of product design using DFM technique.

Clinical Study of Discrimination of Sasang Constitution wi th 7-Zone-Diagnostic System(VEGA-DFM722) (7구역진단기(VEGA-DFM722)를 이용한 사상체질 판별 가능성에 대한 임상 연구)

  • Song, Beom-Yong;Kwon, Kyong-Suk;Song, Jeong-Mo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.19 no.2
    • /
    • pp.82-93
    • /
    • 2007
  • 1. Objectives Functional medicine is a system which utilizes certain Investigative and treatment methods that are primarily oriented toward the recognition of functional disorder. The 7-zone-diagnostic system(VEGA-DFM722 and ABR-2000, etc) is a diagnostic device which applies pulse signals to predetermined bodily locations. We think that we can discriminate between Soeumin, Soyangin and Taeumin with this system. 2. Methods The subject of our study is no disease men and women who are decided the same constitution both survey of the QSCC II and diagnosis of specialist of the Sasang Constitution. All subject are 76(Soeumin(N=24), Soyangin(N=17), Taeumin(N=35)) cases. We make an analysis of a distinctive feature on the result of the VEGA-DFM722. 3. Results and Conclusions 1) Soeumin or Taeumin women had that the red bar graphs of and 1, 2 and 3 are lower than the red bar graphs of zone 4, 5, 6 and 7 in factor AA on the result of the VEGA-DFM722 with the naked eye. Soyangin or Taeumin men had that the red bar graphs of zone 1,2 and 3 are higher than the red bar graphs of tone 4, 5, 6 and 7 in factor AA on the result of the VEGA-DFM722 with the naked eye. 2) The typical discrimination between Soeumin and Soyangin showed statistical significance(p<0.05) in Factor PF 4(red bar) on the result of VEGA-DFM722.

  • PDF

Field Programmable Gate Array Reliability Analysis Using the Dynamic Flowgraph Methodology

  • McNelles, Phillip;Lu, Lixuan
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1192-1205
    • /
    • 2016
  • Field programmable gate array (FPGA)-based systems are thought to be a practical option to replace certain obsolete instrumentation and control systems in nuclear power plants. An FPGA is a type of integrated circuit, which is programmed after being manufactured. FPGAs have some advantages over other electronic technologies, such as analog circuits, microprocessors, and Programmable Logic Controllers (PLCs), for nuclear instrumentation and control, and safety system applications. However, safety-related issues for FPGA-based systems remain to be verified. Owing to this, modeling FPGA-based systems for safety assessment has now become an important point of research. One potential methodology is the dynamic flowgraph methodology (DFM). It has been used for modeling software/hardware interactions in modern control systems. In this paper, FPGA logic was analyzed using DFM. Four aspects of FPGAs are investigated: the "IEEE 1164 standard," registers (D flip-flops), configurable logic blocks, and an FPGA-based signal compensator. The ModelSim simulations confirmed that DFM was able to accurately model those four FPGA properties, proving that DFM has the potential to be used in the modeling of FPGA-based systems. Furthermore, advantages of DFM over traditional reliability analysis methods and FPGA simulators are presented, along with a discussion of potential issues with using DFM for FPGA-based system modeling.

Effect of direct-fed microbials on culturable gut microbiotas in broiler chickens: a meta-analysis of controlled trials

  • Heak, Chhaiden;Sukon, Peerapol;Sornplang, Pairat
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.11
    • /
    • pp.1781-1794
    • /
    • 2018
  • Objective: This meta-analysis was conducted to evaluate the overall effect of direct-fed microbial (DFM) or probiotic supplementation on the log concentrations of culturable gut microbiota in broiler chickens. Methods: Relevant studies were collected from PubMed, SCOPUS, Poultry Science Journal, and Google Scholar. The studies included controlled trials using DFM supplementation in broiler chickens and reporting log concentrations of the culturable gut microbiota. The overall effect of DFM supplementation was determined using standardized mean difference (SMD) with a random-effects model. Subgroups were analyzed to identify pre-specified characteristics possibly associated with the heterogeneity of the results. Risk of bias and publication bias were assessed. Results: Eighteen taxa of the culturable gut microbiota were identified from 42 studies. The overall effect of DFM supplementation on the log concentrations of all 18 taxa did not differ significantly from the controls (SMD = -0.06, 95% confidence interval [-0.16, 0.04], p = 0.228, $I^2=85%$, n = 699 comparisons), but the 18 taxa could be further classified into three categories by the direction of the effect size: taxa whose log concentrations did not differ significantly from the controls (category 1), taxa whose log concentrations increased significantly with DFM supplementation (category 2), and taxa whose log concentrations decreased significantly with DFM supplementation (category 3). Category 1 comprised nine taxa, including total bacterial counts. Category 2 comprised four taxa: Bacillus, Bifidobacterium, Clostridium butyricum, and Lactobacillus. Category 3 comprised five taxa: Clostridium perfringens, coliforms, Escherichia coli, Enterococcus, and Salmonella. Some characteristics identified by the subgroup analysis were associated with result heterogeneity. Most studies, however, were present with unclear risk of bias. Publication bias was also identified. Conclusion: DFM supplementation increased the concentrations of some beneficial bacteria (e.g. Bifidobacterium and Lactobacillus) and decreased those of some detrimental bacteria (e.g. Clostridium perfringens and Salmonella) in the guts of broiler chickens.