• Title/Summary/Keyword: DFF45

Search Result 24, Processing Time 0.022 seconds

Protective Effect of Hwansodan in Serum and Glucose Deprivation Induced-apoptotic Death of PC12 Cells Via Ho-1 Expression (영양혈청 결핍성 PC12 세포고사에서 HO-1의 발현 증가를 통한 환소단의 보호 효과)

  • Jung, Jae-Eun;Kim, Jin-Kyung;Kang, Baek-Gyu;Park, Chan-Ny;Park, Rae-Kil;Moon, Byung-Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1459-1466
    • /
    • 2006
  • The water extract of Hwansodan has been traditionally used for treatment of ischemic brain damage in oriental medicine. However, little is known about the mechanism by which the water extract of Hwansodan rescues cells from neurodegenerative disease. PC12 pheochromocytoma cells have been used extensively as a model for studying the cellular and molecular mechanisms of neuronal cell damages. Under deprivation of growth factor and ischemic injury, PC12 cells spontaneously undergoes apoptotic cell death. Serum and glucose deprivation markedly decreased the viability of PC12 cells, which was characterized with apparent apoptotic features such as membrane blebbing as well as fragmentation of genomic DNA and nuclei. However, the aqueous extract of Hwansodan significantly reduced serum and glucose deprivation-induced cell death and apoptotic characteristics through reduction of intracellular peroxide generation. Pretreatment of Hwansodan also ingibited the activation of caspase-3, in turn, degradation of ICAD/DFF45 was completely abolished in serum and glucose deprivated cells. Furthermore, pretreatment of Hwansodan obviously increased heme oxygenase 1 (HO-1) expression in PC12 cells. Taken together, the data suggest that the protective effects of Hwansodan against serum and glucose deprivation induced oxidative injuries may be achieved through the scavenging of reactive oxygene species accompanying with HO-1 induction.

Esculetin Induces Apoptosis through Caspase-3 Activation in Human Leukemia U937 Cells (Esculetin의 caspase-3 활성을 통한 U937 인체 혈구암세포의 세포사멸 유도)

  • Park, Cheol;Hyun, Sook-Kyung;Shin, Woo-Jin;Chung, Kyung-Tae;Choi, Byung-Tae;Kwon, Hyun-Ju;Hwang, Hye-Jin;Kim, Byung-Woo;Park, Dong-Il;Lee, Won-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.249-255
    • /
    • 2009
  • Esculetin, a coumarin compound, has been known to inhibit proliferation and induce apoptosis in several types of human cancer cells. However, the molecular mechanisms involved in esculetin-induced apoptosis are still uncharacterized in human leukemia cells. In this study, we have investigated whether esculetin exerts anti-proliferative and apoptotic effects on human leukemia U937 cells. It was found that esculetin could inhibit cell viability in a time-dependent manner, which was associated with the induction of apoptotic cell death such as increased populations of apoptotic- sub G1 phase. Apoptosis of U937 cells by esculetin was associated with an inhibition of Bcl-2/Bax binding activity, formation of tBid, down-regulation of X-linked inhibitor of apoptotic protein (XIAP) expression, and up-regulation of death receptor 4 (DR4) and FasL expression. Esculetin treatment also induced the degradation of ${\beta}$-catenin and DNA fragmentation factor 45/inhibitor of caspase-activated DNase (DFF45/ICAD). Furthermore, a caspase-3 specific inhibitor, z-DEVD-fmk, significantly inhibited sub-G1 phase DNA content, morphological changes and degradation of ${\beta}$-catenin and DEE45/ICAD. These results indicated that a key regulator in esculetin-induced apoptosis was caspase-3 in human leukemia U937 cells.

Induction of Selective Cell Death of Oral Squamous Carcinoma Cells by Integrin α2 Antibody and EGFR Antibody (인테그린 α2와 상피성장인자수용체 차단항체의 저해작용을 통한 구강편평상피암 세포의 선택적 제거)

  • Choi, Yeon-Sik;Kim, Gyoo-Cheon;Yoon, Sik;Hwang, Dae-Seok;Kim, Cheol-Hun;Jeon, Young-Chan;Byun, June-Ho;Shin, Sang-Hun;Kim, Uk-Kyu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.3
    • /
    • pp.143-154
    • /
    • 2013
  • Purpose: This study was to find efficacy of integrin alpha2 (${\alpha}_2$) and epidermal growth factor receptor (EGFR) as tumor marker of oral squamous cell carcinoma (SCC) and clarify the selective cell death effect of anti-integrin ${\alpha}_2$ and anti-EGFR on SCC cells, additionally testify conjugated gold nanoparticles (GNP) with air plasma for selective cell death of oral SCC. Methods: Expression of integrin ${\alpha}_2$, EGFR on human SCC cells (SCC25) were examined by western blot. SCC25 cells were treated with anti-integrin ${\alpha}_2$, anti-EGFR and analysed by Hemacolor staining, immunoflorescence staining, FACS flow cytometry. Conjugated GNP with integrin ${\alpha}_2$, EGFR antibody were treated by air plasma on SCC cells. Results: Integrin ${\alpha}_2$ and EGFR were over-expressed on SCC25 cells than normal lung WI-38 cells. The cell viability rate of SCC25 cells treated with anti-integrin ${\alpha}_2$, anti-EGFR was lower than WI-38 cells. The concentration changes of nucleus, releasing cytochrome c and apoptosis inducing factor (AIF) from mitochondria to cytosol were observed. The changes of proteins related with apoptosis were observed. Increase of bax, bcl-xL, activation of caspase-3, -7, -9, and fragmentation of PARP, DFF45 and decrease of lamin A/C in SCC25 cells were observed. In FACS, increase of sub-$G_1$ and S phase was observed. Cell cycle related proteins, Such as cyclin D1, cyclin dependent kinase (CDK) 4, cyclin A, cyclin E, CDK 2, p27 were decreased. After SCC25 cells treated with conjugatged GNP-Integrin ${\alpha}_2$, GNP-EGFR, additionally air plasma, the cell death rate was significantly increased. Conclusion: Integrin ${\alpha}_2$, EGFR were over-expressed in oral SCC cells. Anti-integrin ${\alpha}_2$, anti-EGFR in SCC25 cells induced apoptosis selectively. When GNP-anti integrin ${\alpha}_2$, GNP-anti EGFR were treated with air plasma on SCC25 cells, cancer cells were died more selectively. GNP-anti integrin ${\alpha}_2$, GNP-anti EGFR with air plasma could be treatment choice of oral SCC.

Induction of Apoptosis by Samgibopae-tang in Human Non-small-cell Lung Cancer Cells (인체폐암세포 NCI-H460 및 A549의 apoptosis 유발에 미치는 삼기보배탕의 영향)

  • Heo, Man-Kyu;Heo, Tae-Yool;Kim, Ki-Tak;Byun, Mi-Kwon;Kim, Jin-Young;Sim, Sung-Heum;Kim, Koang-Lock;Kam, Cheol-Woo;Park, Dong-Il
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.473-491
    • /
    • 2007
  • Objectives : This study was designed to investigate the antiproliferative activity of the water extract of Samgibopae-tang (SGBPT) in NCI-H460 and A549 non-small-cell lung cancer cell lines Methods : In this study, we measured the subsistence, form of NCI-H460 and A549 non-small-cell lung cancer cell by hemocytometer and DAPI staining. In each cell, we analyzed DNA fragmentation. reverse transcription-polymerase chain reaction and measured activity of caspase-3, caspase-8 and caspase-9. Results and Conclusions : We found that exposure of A549 cells to SGBPT resulted in growth inhibition in a dose-dependent manner. butSGBPT did not affect the growth of NCI-H460 cells. The antiproliferative effect by SGBPT treatment in A549 cells was associated with morphological changes. SGBPT treatment partially induced the expression of DR5 cells and the expression of Faswas markedly increased in both transcriptional and translational levels in A549 cells. SGBPT treatment partially induced the expression of Bcl-2, Bcl-XL and the expression of Bid was markedly decreased in translational levels in A549 cells. However, SGBPT treatment did not affect the expression of IAP family in A549 orNCI-H460 cells. SGBPT treatment partially induced the expression of caspase-3, caspase-8, caspase-9 activity which markedly increased in a dose-dependent manners in A549 cells. The fragmental development of PARP and ${\beta}$-catenin protein was observed in A549 cells by SGBPT treatment. SGBPT treatment induced the expression of PLC-${\gamma}1$ protein which decreased in A549 cells. SGBPT treatment partially induced the expression of DFF45/ICAD which markedly increased in a dose-dependent manner in A549 cells. Taken together. these findings suggested that SGBPT-induced inhibition of human lung carcinoma did not affect NCI-H460 cell growth. However, SGBPT-induced inhibition of human lung carcinoma A549 cell growth was associated with the induction of death receptor and mitochondrial pathway. The results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of SGBPT.

  • PDF