• Title/Summary/Keyword: DFA Normalization

Search Result 2, Processing Time 0.014 seconds

Automatic Generation of Code Optimizer for DFA Pattern Matching (DFA 패턴 매칭을 위한 코드 최적화기의 자동적 생성)

  • Yun, Sung-Lim;Oh, Se-Man
    • The KIPS Transactions:PartA
    • /
    • v.14A no.1 s.105
    • /
    • pp.31-38
    • /
    • 2007
  • Code Optimization is converting to a code that is equivalent to given program but more efficient, and this process is processed in Code Optimizer. This paper designed and processed Code Optimizer Generator that automatically generates Code Optimizer. In other words Code Optimizer is automatically generated for DFA Pattern Matching which finds the optimal code for the incoming pattern description. DFA Pattern Matching removes redundancy comparisons that occur when patterns are sought for through normalization process and improves simplification and structure of pattern shapes for low cost. Automatic generation of Code Optimization for DFA Pattern Matching eliminates extra effort to generate Code Optimizer every time the code undergoes various transformations, and enables formalism of Code Optimization. Also, the advantage of making DFA for optimization is that it is faster and saves cost of Code Optimizer Generator.

Code Optimization Using Pattern Table (패턴 테이블을 이용한 코드 최적화)

  • Yun Sung-Lim;Oh Se-Man
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1556-1564
    • /
    • 2005
  • Various optimization techniques are deployed in the compilation process of a source program for improving the program's execution speed and reducing the size of the source code. Of the optimization pattern matching techniques, the string pattern matching technique involves finding an optimal pattern that corresponds to the intermediate code. However, it is deemed inefficient due to excessive time required for optimized pattern search. The tree matching pattern technique can result in many redundant comparisons for pattern determination, and there is also the disadvantage of high cost involved in constructing a code tree. The objective of this paper is to propose a table-driven code optimizer using the DFA(Deterministic Finite Automata) optimization table to overcome the shortcomings of existing optimization techniques. Unlike other techniques, this is an efficient method of implementing an optimizer that is constructed with the deterministic automata, which determines the final pattern, refuting the pattern selection cost and expediting the pattern search process.

  • PDF