• Title/Summary/Keyword: DFA(detrended fluctuation analysis)방법

Search Result 4, Processing Time 0.019 seconds

Time Series Analysis of Gamma exposure rates in Gangneung Area (강릉 지역 공간 감마선량률의 시계열 분석)

  • Cha, Hohwan;Kim, Jaehwa
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • In this work, we investigate the statistical properties of gamma exposure rates using well-known analysis methods, such as Autocorrelation Function Analysis(ACF), Rescaled Range Analysis(R/S Analysis), and Detrended Fluctuation Analysis(DFA). Especially, DFA is an important method to reliably detect long-range correlations in non-stationary time series. Our data are measured by Gangneung regional radiation monitoring station over the period of 1998 to 2011. First, we find a crossover indicating two different governing regimes in fluctuations of gamma exposure rates. Within a year, they show a strong long-ranged memory while this property vanishes over the range of time period longer than one year. Second, our finding is very securely supported by a variety of analysis tools. Those tools yield many relevant exponents which satisfies the well known relation between them.

Detrended Fluctuation Analysis on Sleep EEG of Healthy Subjects (정상인 수면 뇌파 탈경향변동분석)

  • Shin, Hong-Beom;Jeong, Do-Un;Kim, Eui-Joong
    • Sleep Medicine and Psychophysiology
    • /
    • v.14 no.1
    • /
    • pp.42-48
    • /
    • 2007
  • Introduction: Detrended fluctuation analysis (DFA) is used as a way of studying nonlinearity of EEG. In this study, DFA is applied on sleep EEG of normal subjects to look into its nonlinearity in terms of EEG channels and sleep stages. Method: Twelve healthy young subjects (age:$23.8{\pm}2.5$ years old, male:female=7:5) have undergone nocturnal polysomnography (nPSG). EEG from nPSG was classified in terms of its channels and sleep stages and was analyzed by DFA. Scaling exponents (SEs) yielded by DFA were compared using linear mixed model analysis. Results: Scaling exponents (SEs) of sleep EEG were distributed around 1 showing long term temporal correlation and self-similarity. SE of C3 channel was bigger than that of O1 channel. As sleep stage progressed from stage 1 to slow wave sleep, SE increased accordingly. SE of stage REM sleep did not show significant difference when compared with that of stage 1 sleep. Conclusion: SEs of Normal sleep EEG showed nonlinear characteristic with scale-free fluctuation, long-range temporal correlation, self-similarity and self-organized criticality. SE from DFA differentiated sleep stages and EEG channels. It can be a useful tool in the research with sleep EEG.

  • PDF

An Empirical Study for the Existence of Long-term Memory Properties and Influential Factors in Financial Time Series (주식가격변화의 장기기억속성 존재 및 영향요인에 대한 실증연구)

  • Eom, Cheol-Jun;Oh, Gab-Jin;Kim, Seung-Hwan;Kim, Tae-Hyuk
    • The Korean Journal of Financial Management
    • /
    • v.24 no.3
    • /
    • pp.63-89
    • /
    • 2007
  • This study aims at empirically verifying whether long memory properties exist in returns and volatility of the financial time series and then, empirically observing influential factors of long-memory properties. The presence of long memory properties in the financial time series is examined with the Hurst exponent. The Hurst exponent is measured by DFA(detrended fluctuation analysis). The empirical results are summarized as follows. First, the presence of significant long memory properties is not identified in return time series. But, in volatility time series, as the Hurst exponent has the high value on average, a strong presence of long memory properties is observed. Then, according to the results empirically confirming influential factors of long memory properties, as the Hurst exponent measured with volatility of residual returns filtered by GARCH(1, 1) model reflecting properties of volatility clustering has the level of $H{\approx}0.5$ on average, long memory properties presented in the data before filtering are no longer observed. That is, we positively find out that the observed long memory properties are considerably due to volatility clustering effect.

  • PDF

Effects of Walking Speeds and Cognitive Task on Gait Variability (보행속도변화와 동시 인지과제가 보행 가변성에 미치는 영향)

  • Choi, Jin-Seung;Kang, Dong-Won;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.49-58
    • /
    • 2008
  • The purpose of this study was to identify effects of walking speed and a cognitive task during treadmill walking on gait variability. Experiments consisted of 5 different walking speeds(80%, 90%, 100%, 110% and 120% of preferred walking speed) with/without a cognitive task. 3D motion analysis system was used to measure subject's kinematic data. Temporal/spatial variables were selected for this study; stride time, stance time, swing time, step time, double support time, stride length, step length and step width. Two parameters were used to compare stride-to-stride variability with/without cognitive task. One is the coefficient of variance which is used to describe the amount of variability. The other is the detrended fluctuation analysis which is used to infer self-similarity from fluctuation of aspects. Results showed that cognitive task may influence stride-to-stride variability during treadmill walking. Further study is necessary to clarify this result.