• Title/Summary/Keyword: DEVS modeling simulation

Search Result 158, Processing Time 0.024 seconds

Extend DEVS Modeling and Simulation Methodology for Variable Structure Modeling (가변구조 모델링을 위한 확장된 DEVS 모델링 및 시뮬레이션 방법론)

  • 정기찬;이종근;이장세;지승도
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.4
    • /
    • pp.109-124
    • /
    • 1999
  • The major objective of this research is to design and build the variable structure DEVS modeling & simulation framework. To do this, we have proposed the direct message passing mechanism between the model and its simulator to deal with the structural demand from the model during the simulation. In this approach, four types of basic messages are introduced for the vertical(creation/deletion of the child) and horizontal(creation/deletion of the brother) structural changes. Proposed methodology has been successfully applied to the multi-processor system and the forest fire information system.

  • PDF

Method and Implementation (or Consistency Verification of DEVS Model against User Requirement (DEVS 모델과 사용자 요구사항의 일관성 검증 방법론 및 환경 구현)

  • Kim Do-Hyung;Kim Tag-Gon
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.05a
    • /
    • pp.100-105
    • /
    • 2005
  • Development of complex discrete event simulators requires cooperation between domain experts and modeling experts who involve the development. With the cooperation the domain experts derive user requirement and modeling experts transform the requirement to a simulation model. This paper proposes a method for consistency verification of simulation model in DEVS formalism against the user requirement in UML diagrams. It also presents an automated tool, called VeriDEVS, which implements the proposed method. Inputs of VeriDEVS are three UML diagrams, namely use case, class and sequence diagrams, and DEVS Graph, all in Visio; outputs of a verification result is represented in PowerPoint files.

  • PDF

GK-DEVS : Geometric and Kinematic DEVS for Simulation of 3 Dimensional Man-Made Systems (GK-DEVS : 3차원 인간제작 시스템의 시뮬레이션을 위한 형상 기구학 DEVS)

  • 황문호;천상욱;최병규
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.1
    • /
    • pp.39-54
    • /
    • 2000
  • Presented in this paper is a modeling and simulation methodology for 3 dimensional man-made systems. Based on DEVS(discrete event system specification) formalism[13], we propose GK-DEVS (geometrical and kinematic DEVS) formalism to describe the geometrical and kinematic structure and continuous state dynamics. To represent geometry and kinematics, we add a hierarchical structure to the conventional atomic model. In addition, we employ the "empty event" and its external event function for continuous state changing. In terms of abstract simulation algorithm[13], the simulation method of GK-DEVS, named GK-Simulator, is proposed for combined discrete-continuous simulation. Using GK-DEVS, the simulation of an FMS(flexible manufacturing system) consisting of a luring machine, a 3-axis machine and a RGV-mounted robot has been peformed.en peformed.

  • PDF

Agent-based SAF Modeling Tool for DEVS M&S (DEVS M&S 환경을 위한 에이전트 기반의 SAF 모델링 도구)

  • Shin, Suk-Hoon;Park, Kang-Moon;Lee, Eun-Bog;Chi, Sung-Do;Han, Seung-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.49-55
    • /
    • 2013
  • Recently the CGF/SAF (Computer Generated Force / Semi-Automated Force) technology has been getting attention to deal with the increasing complexity in a DM&S(Defence Modeling and Simulation) environment. OneSAF is one of well-known CGF/SAF systems, however, it is not able to support the DEVS framework which is an advanced discrete event based modeling and simulation environment. Especially, most DM&S systems in Korea has been developed on the basis of the DEVS framework. In this paper, we have proposed the agent-based SAF design methodology and tool for supporting DEVS M&S environment. The proposed SAF modeling tool is divided into two parts; the agent modeling part and SAF modeling part. In the agent modeling environment, the modeler can simply create the agent model by writing down the necessary rules. It also provides the agent testing environment so that the modeler maybe conveniently verify the prescribed agent model. The SAF model is finally created by combing the individual agents based on the pre-defined structure. DM&S engineers will be able to employ our tools and modeling methodology to design the DEVS-based DM&S system to be developed.

The DEVS-based Detailed Implementation Method of the Command and Fire Control System for the Underwater Vehicle DEVS-HLA Simulation in the Engagement Level (교전급 수중운동체 DEVS-HLA 시뮬레이션을 위한 전술통제체계의 DEVS 기반 상세 구현 방법)

  • Son, Myeong-Jo;Cha, Ju-Hwan;Kim, Tae-Wan;Lee, Kyu-Yeul;Nah, Young-In
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.628-645
    • /
    • 2010
  • To perform the engagement level simulation between the underwater vehicle model and the surface model those are constituted with various systems/ sub-systems, we implemented four different federates as a federation according to the IEEE 1516 HLA (High Level Architecture) protocol that is the international standard in the distributed simulation. Those are CFCS (Command and Fire Control System) federate, motion federate, external entities (torpedos, countermeasure and surfaceship) federate, and visualization federate that interacts with OSG (Open Scene Graph)-based visualization rendering module. In this paper, we present the detailed method about the model constitution for discrete event simulation in the distributed environment. For the sake of this purpose, we introduce the DEVS (Discrete Event System Specification)-HLA-based modeling method of the CFCS federate that reflects not only the interations between models, but also commands from user and tactics manager that is separated from the model. The CFCS federate makes decisions in various missions such as the normal diving, the barrier misision, the target motion analysis, the torpedo launch, and the torpedo evasion. In the perspective of DEVS modeling, the CFCS federate is the coupled model that has the tactical data process model, command model and fire control model as an atomic model. The message passing and time synchronization with other three federates are settled by the $m\ddot{a}k$ RTI (Runtime Infrastructure) that supports IEEE 1516. In this paper, we provides the detailed modeling method of the complicated model that has hierarchical relationship such as the CFCS system in the submarine and that satisfies both of DEVS modeling method for the discrete event simulation and HLA modeling method for the distributed simulation.

Algorithm for Transformation of Timed Petri Nets to DEVS Formalism (시간 페트리네트를 DEVS 형식론으로 변환하는 알고리즘)

  • 김영찬;김탁곤
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.2
    • /
    • pp.77-88
    • /
    • 2002
  • Petri nets is a widely used formalism for specification and analysis of concurrent systems which is a subclass of discrete event systems. The DEVS (Discrete Event System Specification) formalism provides a general framework for specification of discrete event systems in a hierarchical, modular form. Often, modeling a discrete event system may employ both Petri Nets and DEVS formalism. In such a case low-level operational logics are modeled by Petri Nets and high-level managements by the DEVS formalism. Analysis of the system requires simulation of the overall system. This paper presents an algorithm for transformation of Petri Nets to DEVS formalism. The transformation enables modelers to simulate an overall system, which consists of DEVS models and Petri Nets models, in a unified DEVS simulation environment such as DEVSim++. An example for such transformation will be given.

  • PDF

A Research on the LYNX-ESM System Operating and Performance Prediction Simulation Based on DEVS (이산사건 모델링 및 시뮬레이션 기반 LYNX-ESM 체계 시뮬레이션에 관한 연구)

  • Shin, Dong-Cho;Yun, Ki-Cheonn
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.61-70
    • /
    • 2006
  • This paper is to describe LYNX-ESM Simulation System to simulate for EW operating environment analysis and system performance verification of LYNX-ESM system using Discrete Event Simulation(DEVS) Methodology. This system consists of 3 PC with TCP/IP network. Each PC is loaded with Modeling & Simulation program based DEVS. Each connected program conducts EW simulation. As a result, we analyze the operating environment of the maritime EW threat, simulate the EW threat discrimination and geolocation capability, and estimate the LYNX-ESM system effectiveness before real LYNX-ESM system development.

A simulation for the analysis of the evasive capability of submarine against a torpedo using DEVS modeling (DEVS 기반 모델링을 적용한 잠수함의 어뢰회피 성능 분석 시뮬레이션)

  • Kang Jung-Ho;Lee Sung-Jun;Cha Ju-Hwan;Yoo Seong-Jin;Lee Hyo-Kwang;Lee Kyu-Yeul;Kim Tae-Wan;Ko Yong-Seog
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.2
    • /
    • pp.57-71
    • /
    • 2005
  • A simulation for the analysis of the evasive capability of a conventional costal submarine against a light Anti-Submarine Warfare (ASW) torpedo has been studied. The Torpedo, Submarine Controller, Devoy, and Jammer models of this simulation are analysised and designed using Unified Modeling Language (UML) and in addition they are modeled Discrete Event System Specification (DEVS). We examine maximum speed, acceleration, countermeasure systems capabilities of a submarine, and sonar range of a torpedo as the factors which affect the evasive capability of the submarine. This paper shows the relationships between those various factors and the submarine's evasive capability as the outcome of the simulation. The simulation models can be applied for simulation based acquisition (SBA) of a submarine system.

  • PDF

DEVS-based Modeling Simulation for Semiconductor Manufacturing Using an Simulation-based Adaptive Real-time Job Control Framework (시뮬레이션 기반 적응형 실시간 작업 제어 프레임워크를 적용한 웨이퍼 제조 공정 DEVS 기반 모델링 시뮬레이션)

  • Song, Hae-Sang;Lee, Jae-Young;Kim, Tag-Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.45-54
    • /
    • 2010
  • The inherent complexity of semiconductor fabrication processes makes it hard to solve well-known job scheduling problems in analytical ways, which leads us to rely practically on discrete event modeling simulations to learn the effects of changing the system's parameters. Meanwhile, unpredictable disturbances such as machine failures and maintenance diminish the productivity of semiconductor manufacturing processes with fixed scheduling policies; thus, it is necessary to adapt job scheduling policy in a timely manner in reaction to critical environmental changes (disturbances) in order for the fabrication process to perform optimally. This paper proposes an adaptive job control framework for a wafer fabrication process in a control system theoretical approach and implements it based on a DEVS modeling simulation environment. The proposed framework has the advantages in view of the whole systems understanding and flexibility of applying new rules compared to most ad-hoc software approaches in this field. Furthermore, it is flexible enough to incorporate new job scheduling rules into the existing rule set. Experimental results show that this control framework with adaptive rescheduling outperforms fixed job scheduling algorithms.