• Title/Summary/Keyword: DEVS Formalism

Search Result 117, Processing Time 0.024 seconds

Structured DEVS Formalism: A Structural Modelling Method of Discrete Event Systems (Structured DEVS Formalism: 이산사건 시스템의 구조적 모델링 기법)

  • Song, Hae-Sang
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.2
    • /
    • pp.19-30
    • /
    • 2012
  • In recent decades, it has been known that the Discrete Event System Specification, or DEVS, formalism provides sound semantics to design a modular and hierarchical model of a discrete event system. In spite of this benefit, practitioners have difficulties in applying the semantics to real-world systems modeling because DEVS needs to specify a large size of sets of events and/or states in an unstructured form. To resolve the difficulties, this paper proposes an extension of the DEVS formalism, called the Structured DEVS formalism, with an associated graphical representation, called the DEVS diagram, by means of structural representation of such sets based on closure property of set theory. The proposed formalism is proved to be equivalent to the original DEVS formalism in their model specification, yet the new formalism specifies sets in a structured form with a concept of phases, variables and ports. A simplified example of the structured DEVS with the DEVS diagram shows the effectiveness of the proposed formalism which can be easily implemented in an objected-oriented simulation environment.

Algorithm for Transformation of Timed Petri Nets to DEVS Formalism (시간 페트리네트를 DEVS 형식론으로 변환하는 알고리즘)

  • 김영찬;김탁곤
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.2
    • /
    • pp.77-88
    • /
    • 2002
  • Petri nets is a widely used formalism for specification and analysis of concurrent systems which is a subclass of discrete event systems. The DEVS (Discrete Event System Specification) formalism provides a general framework for specification of discrete event systems in a hierarchical, modular form. Often, modeling a discrete event system may employ both Petri Nets and DEVS formalism. In such a case low-level operational logics are modeled by Petri Nets and high-level managements by the DEVS formalism. Analysis of the system requires simulation of the overall system. This paper presents an algorithm for transformation of Petri Nets to DEVS formalism. The transformation enables modelers to simulate an overall system, which consists of DEVS models and Petri Nets models, in a unified DEVS simulation environment such as DEVSim++. An example for such transformation will be given.

  • PDF

Effective Simulation Modeling Formalism for Autonomous Control Systems (자율제어시스템의 효과적인 시뮬레이션 모델링 형식론)

  • Chang, Dae Soon;Cho, Kang H;Cheon, Sanguk;Lee, Sang Jin;Park, SangChul
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.4
    • /
    • pp.973-982
    • /
    • 2018
  • Purpose: The purpose of this study is to develop an effective simulation modeling formalism for autonomous control systems, such as unmanned aerial vehicles and unmanned surface vehicles. The proposed simulation modeling formalism can be used to evaluate the quality and effectiveness of autonomous control systems. Methods: The proposed simulation modeling formalism is developed by extending the classic DEVS (Discrete Event Systems Specifications) formalism. The main advantages of the classic DEVS formalism includes its rigorous formal definition as well as its support for the specification of discrete event models in a hierarchical and modular manner. Results: Although the classic DEVS formalism has been a popular modeling tool, it has limitations in describing an autonomous control system which needs to make decisions by its own. As a result, we proposed an extended DEVS formalism which enables the effective description of internal decisions according to its conditional variables. Conclusion: The extended DEVS formalism overcomes the limitations of the classic DEVS formalism, and it can be used for the effectiveness simulation of autonomous weapon systems.

Object-Oriented Simulation of Container Terminal using a DEVS Formalism (DEVS 형식론을 이용한 컨테이너터미널의 객체지향 시뮬레이션에 관한 연구)

  • 성경빈;정희균;박용욱;이철영
    • Journal of Korean Port Research
    • /
    • v.14 no.1
    • /
    • pp.47-55
    • /
    • 2000
  • In order to cope with the changes of container terminal situation in these days, many simulation studies for container terminal have been accomplished. But previous simulation studies using simulation language have limitations in model representation and difficulties in modeling of large scaled container terminal system. To make these problems better, this paper addresses an object-oriented simulation of container terminal system using a DEVS formalism. The DEVS(Discrete Event System Specification) formalism, developed by Zeigler, supports specification of discrete event system in a hierarchical and modular manner. The formalism provides a mathematical basis for studying discrete event systems with better understood and sounder semantics. In a step of system modeling, a DEVS formalism aims at the exact system modeling that has a basis of semantics and utilizing the object-oriented manner can flexibly cope with the changes of system environment. In this study a model is developed and verified through the simulation of some alternatives.

  • PDF

Devlopment HLA DEVS-Obj-C Environment for Distributed Simulation (분산 시뮬레이션을 위한 HLA DEVS-Obj-C 환경 구축)

  • 최두진;조대호
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.11a
    • /
    • pp.85-89
    • /
    • 2002
  • Development of distributed simulation environment must be required in order to simulate the distributed models regionally and inter-operate with running simulations individually, Simulation based on DEVS formalism is difficult to simulate the distributed models. DEVS formalism is modeling methodology. To specify model, this formalism separates behavior and structure, therefore it is able to design complex model easily. HLA is standard framework of distribute simulation environment, It is defined to facilitate the interoperability and the reusability. RTI (Run Time Infrastructure) is software that provides common service to simulation systems and implementation of the HLA Interface Specification. Method of implementation is that modules cooperating with RTI are added to simulator on DEVS simulation environment. On the DEVS simulation environment (DEVS-Obj -C) that already developed, Highest class of abstract simulator uses service that RTI provide, then This environment is able to change DEVS model into Federate and run distribute simulation that inter-operates with the RTI. Because this distributed simulation environment includes convenience of modeling that obtains through the DEVS formalism and accompanies HLA standard, this environment make it possible to simulate with_ complex systems and heterogeneous simulations

  • PDF

Logical Analysis of Real-time Discrete Event Control Systems Using Communicating DEVS Formalism (C-DEVS형식론을 이용한 실시간 이산사건 제어시스템의 논리 해석 기법)

  • Song, Hae Sang;Kim, Tag Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.35-46
    • /
    • 2012
  • As complexity of real-time systems is being increased ad hoc approaches to analysis of such systems would have limitations in completeness and coverability for states space search. Formal means using a model-based approach would solve such limitations. This paper proposes a model-based formal method for logical analysis, such as safety and liveness, of real-time systems at a discrete event system level. A discrete event model for real-time systems to be analyzed is specified by DEVS(Discrete Event Systems Specification) formalism, which specifies a discrete event system in hierarchical, modular manner. Analysis of such DEVS models is performed by Communicating DEVS (C-DEVS) formalism of a timed global state transition specification and an associated analysis algorithm. The C-DEVS formalism and an associated analysis algorithm guarantees that all possible states for a given system are visited in an analysis phase. A case study of a safety analysis for a rail road crossing system illustrates the effectiveness of the proposed method of the model-based approach.

Object-Oriented Simulaton of Container Terminal Using a DEVS Formalsim (DEVS형식론을 이용한 컨테이너 터미널의 객체지향 시뮬레이션에 관한 연구)

  • 성경빈;정희균;박용욱;이철영
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.35-42
    • /
    • 1999
  • In order to cope with the changes of container terminal situation in these days, many simulation studies for container terminal have been accomplished. But established simulation studies using simulation language have restrictions in model representation and difficulties in modeling of large scaled container terminal system. To make these problems better, in this paper addresses object-oriented simulation of container terminal system using a DEVS formalism. In a step of system modeling, using a DEVS formalism aim at the exact system modeling that has a basis of semantics and utilizing the object-oriented manner can flexibly cope with the changes of system environment. In this study a model was developed and verified through the simulation of some alternatives.

An Implementation of the DEVS Formalism on a Parallel Distributed Environment (병렬 분산 환경에서의 DEVS 형식론의 구현)

  • 성영락
    • Journal of the Korea Society for Simulation
    • /
    • v.1 no.1
    • /
    • pp.64-76
    • /
    • 1992
  • The DEVS(discrete event system specificaition) formalism specifies a discrete event system in a hierarchical, modular form. DEVSIM++ is a C++based general purpose DEVS abstract simulator which can simulate systems modeled by the DEVS formalism in a sequential environment. This paper describes P-DEVSIM++which is a parallel version of DEVSIM++ . In P-DEVSIM++, the external and internal event of DEVS models can by processed in parallel. For such processing, we propose a parallel, distributed optimistic simulation algorithm based on the Time Warp approach. However, the proposed algorithm localizes the rollback of a model within itself, not possible in the standard Time Warp approach. An advantage of such localization is that the simulation time may be reduced. To evaluate its performance, we simulate a single bus multiprocessor architecture system with an external common memory. Simulation result shows that significant speedup is made possible with our algorithm in a parallel environment.

  • PDF

Performance Evaluation of a Parallel DEVS Simulation Environment of P-DEVSIM ++ (병렬 DEVS 시뮬레이션 환경(P-DEVSIM ++) 성능 평가)

  • 성영락
    • Journal of the Korea Society for Simulation
    • /
    • v.2 no.1
    • /
    • pp.31-44
    • /
    • 1993
  • Zeigler's DEVS(Discrete Event Systems Specification) formalism supports formal specification of discrete event systems in a hierarchical , modular manner. Associated are hierarchical, distributed simulation algorithms, called abstract simulators, which interpret dynamics of DEVS models. This paper deals with performance evaluation of P-DEVSIM ++, a parallel simulation environment which implements the DEVS formalism and associated simulation algorithms in a parallel environment. Performance simulator has been developed and used to experiment models of parallel simulation executions in different conditions. The experimental result shows that simulation time depends on both the number of processors in the parallel system and the communication overheads among such processors.

  • PDF

GK-DEVS : Geometric and Kinematic DEVS for Simulation of 3 Dimensional Man-Made Systems (GK-DEVS : 3차원 인간제작 시스템의 시뮬레이션을 위한 형상 기구학 DEVS)

  • 황문호;천상욱;최병규
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.1
    • /
    • pp.39-54
    • /
    • 2000
  • Presented in this paper is a modeling and simulation methodology for 3 dimensional man-made systems. Based on DEVS(discrete event system specification) formalism[13], we propose GK-DEVS (geometrical and kinematic DEVS) formalism to describe the geometrical and kinematic structure and continuous state dynamics. To represent geometry and kinematics, we add a hierarchical structure to the conventional atomic model. In addition, we employ the "empty event" and its external event function for continuous state changing. In terms of abstract simulation algorithm[13], the simulation method of GK-DEVS, named GK-Simulator, is proposed for combined discrete-continuous simulation. Using GK-DEVS, the simulation of an FMS(flexible manufacturing system) consisting of a luring machine, a 3-axis machine and a RGV-mounted robot has been peformed.en peformed.

  • PDF