• Title/Summary/Keyword: DETERIORATION TYPES

Search Result 335, Processing Time 0.022 seconds

Resistance of concrete made with air- and water-cooled slag exposed to multi-deterioration environments (서냉 및 급냉슬래그를 적용한 콘크리트의 복합열화 저항성)

  • Lee, Seung-Tae;Park, Kwang-Pil;Park, Jung-Hee;Park, Se-Ho
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.11-18
    • /
    • 2018
  • PURPOSES : Durability of concrete is traditionally based on evaluating the effect of a single deterioration mechanism such as freezing & thawing action, chloride attack, carbonation and chemical attack. In reality, however, concrete structures are subjected to varying environmental exposure conditions which often results in multi-deterioration mechanism occurring. This study presents the experimental results on the durability of concrete incorporating air-cooled slag(AS) and/or water-cooled slag(WS) exposed to multi-deterioration environments of chloride attack and freezing & thawing action. METHODS : In order to evaluate durable performance of concretes exposed to single- and multi-deterioration, relative dynamic modulus of elasticity, mass ratio and compressive strength measurements were performed. RESULTS :It was observed that multi-deterioration severely affected durability of concrete compared with single deterioration irrespective of concrete types. Additionally, the replacement of cement by AS and WS showed a beneficial effect on enhancement of concrete durability. CONCLUSIONS : It is concluded that resistance to single- and/or multi-deterioration of concrete is highly dependent on the types of binder used in the concrete. Showing the a good resistance to multi-deterioration with concrete incorporating AS, it is also concluded that the AS possibly is an option for concrete materials, especially under severe environments.

Development of the Evaluation Techniques of the Deterioration for the Rural House (농촌주택 개량을 위한 노후화 진단 방안)

  • 정남수;이정재;김한중;윤성수;박미정
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.1
    • /
    • pp.106-115
    • /
    • 2001
  • This study attempted to make evaluation model of deterioration for the rural house. defined the deterioration of rural house as the two categories. First is the physical deterioration which is affected by physical faults and the second is the social deterioration which is affected by change of environments. As a results, physical deterioration model was developed by types of rural house, and social deterioration model was considered to reverse function of satisfaction of a resident.

  • PDF

Preventive Maintenance Policies for a System with Two Types of Units Subject to Deterioration

  • Kwon, Y.I.;Bai, D.S.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.8 no.2
    • /
    • pp.33-36
    • /
    • 1982
  • This paper considers preventive maintenance policies for a system with two types of units which is subject to deterioration. Two generalized models are investigated ; a preventive maintenance policy based on the cumulative operating time and a policy based on the number of minimal repairs performed. Optimal preventive maintenance policies which minimize the expected average cost per unit time including the earning loss due to the deterioration are discussed and some numerical examples are given.

  • PDF

Assessment of Impact Rating Class and Deterioration Type on the Trails in Mt. Namsan District, Gyeongju National Park (경주국립공원 남산 지구의 탐방로 훼손 유형 및 환경피해도 평가)

  • Heo, Sang-Hyun;You, Ju-Han
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1431-1442
    • /
    • 2015
  • This study was carried out to systematically maintain and manage the trails by assessing the physical characteristics, the types of deterioration and impact rating class of trails located in Mt. Nam District of the Gyeongju National Park. The major trails followed 6 routes including Sambulsa-Geumobong(A), Yongjangsaji-Geumobong(B), Yongjanggol-Yiyoungjae-Gowibong(C), Cheonusa-Gowibong(D), Sangseojang-Forest road(E) and Tongiljeon-Forest road(F). The routes length of A was 2.2 km, 2.7 km of B, 3.4 km of C, 1.3 km of D, 2.0 km of E and 1.0 km of F. In the physical characteristics, A was the widest and F was the narrowest in the width and bared width of trail. In depth of erosion, B was the deepest and E was the shallowest. D was the steepest and E was the gentlest in the slope. In the results of analysing the types of deterioration, A were 13 types, 11 types of B, C and D, 10 types of E and 6 types of F. The times of appearance of deterioration types in A were 86 times, 75 times of B, 105 times of C, 48 times of D, 47 times of E and 13 times of F. In case of the impact rating class, trail erosion was II degree, I degree of trail expansion, root exposure, trail divergence and rock exposure.

Naturalness Assessment of Trails in Urban Area of Gyeongju National Park - Focused on Sogeumgang, Hwarang and Seoak District - (경주국립공원 도심 지역 내 탐방로의 자연도 평가 - 소금강 지구, 화랑 지구, 서악 지구를 대상으로 -)

  • Mun, Sung-Ju;You, Ju-Han
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.4
    • /
    • pp.303-317
    • /
    • 2013
  • The purpose of this study is to offer the raw data for restoration and management of trails by assessing the physical environments, the types of deterioration and the naturalness on trails located in the Sogeumgang, Hwarang and Seoak districts of Gyeongju National Park, Korea. The Sogeumgang was 5.9m, 1.1m of the Hwarang and 1.8m of the Seoak district in trail width. In the bared width of trail, the Sogeumgang was 3.9m, 0.9m of the Hwarang and 1.7m of the Seoak district. In the depth of erosion, the Sogeumgang was 37.1cm, 14.2cm of the Hwarang and Seoak district. The Sogeumgang was $16.8^{\circ}$, $13.1^{\circ}$ of the Hwarang and $12.2^{\circ}$ of the Seoak district in longitudinal slope. In the left and right of transect slope, the Sogeumgang was $18.3^{\circ}$ and $12.6^{\circ}$, $18.0^{\circ}$ and $21.3^{\circ}$ of the Hwarang and $15.3^{\circ}$ and $22.7^{\circ}$ of the Seoak district. In the left, middle and right of soil hardness, the Sogeumgang was 29.9mm, 34.7mm and 31.1mm, 27.6mm, 35.0mm and 27.2mm of the Hwarang and 27.1mm, 30.8mm and 28.0mm of the Seoak district. The types of deterioration in trails were 10 types of the Sogeumgang, 11 types of the Hwarang and 9 types of the Seoak district. The trail erosion, rock exposure and root exposure were substantially observed in the types of deterioration. In the results of the naturalness assessment, the Hwarang district was a good condition, but the Sogeumgang district was bad. The indicators of the Sogeumgang district were mostly poor.

Corrosion Properties of Reinforced Concrete with Types of Surface Cover and Covering Depth under the Combined Deterioration Environments (복합열화 환경하에서 표면피복종류 및 피복두께에 따른 철근콘크리트의 부식특성)

  • Kim, Moo-Han;Kwon, Young-Jin;Kim, Young-Ro;Kim, Jae-Hwan;Jang, Jong-Ho;Cho, Bong-Suk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.119-126
    • /
    • 2004
  • Generally, reinforced concrete is one of the most commonly used structural materials and it prevents corrosion of steel bar by high pH of interior, But, as time elapsed, reinforced concrete structure become deteriorated by many of combined deterioration factors and environmental conditions. And, there are large number of deteriorate mechanism of the reinforced concrete structure and it acts complexly. It is recognized that steel bar corrosion is the main distress behind the present concern regarding concrete durability. In this study, to institute combined deterioration environments, established acceleration condition and cycle for combined deterioration environments has a resemblance to environments which are real structures placed. After that to confirm corrosion properties of reinforced concrete due to permeability with covering depth and types of surface cover under combined deterioration environments, measured carbonation velocity coefficients, chloride ion diffusion coefficients, water absorption coefficients, air permeability coefficients and electric potential, corrosion area ratio, weight reduction, corrosion velocity of steel bar. The results showed that an increase in age also decrease carbonation velocity coefficients, increase Chloride ion diffusion coefficients and increases water absorption coefficients. As well, an increase in age also increases corrosion of steel bar. Data on the development of corrosion velocity of steel bar with types of surface cover made with none, organic B, organic A, inorganic B, and inorganic A is shown. As well, permeability and corrosion velocity of steel bar with covering depth is superior to 10mm than 20mm. And it is confirmed permeability and corrosion properties of steel bar are closely related.

An Assessment of the Deterioration of Fabricated Metal Thread with Light, and Temperature and Humidity Factors: A Focused Study of Asian Textile Collections at the Metropolitan Museum of Art, New York

  • Park, Hae Jin;Hwang, Minsun;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.34 no.4
    • /
    • pp.245-257
    • /
    • 2018
  • To investigate the deterioration of textiles with metal thread, I surveyed 40 textile objects, dating from the 11th to the 19th century from Korea, China, Japan, and Central Asia at the Metropolitan Museum of Art, New York. This survey included various types, widths, and thicknesses of metal thread. In addition, deterioration was examined under the microscope and color information was collected using the spectrophotometer. While investigating metal thread in the collections, I fabricated 12 different types of metal samples with metal leaf(24K gold, silver, and copper leaf), adhesive (hide animal glue and a mixture of hide animal glue and iron oxide red), and paper substrate(Korean mulberry and Taiwanese kozo paper). The accelerated deterioration process of those fabricated samples was carried out using a light box(UV and daylight), and a humidity cabinet. In the light experiment with blue scales textile fading card(aka, blue wool standard), the metal leaf began to peel off during the deterioration process with 756,000 lux-hours UV and daylight. In the temperature and humidity experiment, I could observe the reddish tarnish on copper, and some part of it began to peel off. Color reading on the light exposed samples showed that the degree of color change on the surface follows the amount of exposure as it increased over time. On the other hand, color change on the samples after artificial deterioration using temperature and humidity factors showed random change of color with occasional spikes. Distortion of original shape worsened in the samples exposed to temperature and humidity.

Performance Evaluation of Repair Methods for RC structures by Accelerating Test in Combined Deterioration Chamber and Long-Term Field Exposure Test (복합열화촉진실험 및 장기현장폭로실험에 의한 RC구조물 보수공법의 보수성능평가)

  • Kwon Young-Jin;Kim Jae-Hwan;Han Byung-Chan;Jang Seung-Yup
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.349-356
    • /
    • 2006
  • At present, the selecting system and analytic estimation criterion on repair materials and methods of the deteriorated RC structures have not yet been set up in domestic. Under these circumstances, deterioration such as shrinkage crack, corrosion of rebar has been often occurred after repair, and this finally results in too frequent repairs. In this study, three types of repair methods were experimentally investigated by the accelerating test in a combined deterioration chamber and long-term field exposure test. Three types of repair methods applied in this study belong to a group of polymer cement mortar, which is commonly used in repair works. According to the results of this study, durability of repair mortar layers and corrosion properties of recovered rebar could be investigated in short period by the accelerating test in a combined deterioration chamber, which can simulate the condition of repeated high-and-low temperature and repeated dry-and-wet environment, spraying chloride solution and emitting $CO_2$ gas. After 36 month long-term filed exposure test in the coastal area, harmful macro-cracks are observed in the polymer cement mortar layer of some repair methods. These crack are considered to result from drying shrinkage of polymer cement mortar. Also, after 36 month exposure, amount of corrosion area and weight loss of rebar are found to be different according to the types of repair methods.

Estimation of Deterioration Depth of Rock Slope due to Freezing-thawing (동결융해에 의한 암반사면의 열화심도 산정)

  • Baek Yong;Seo Yong-Seok;Jeong Ja-Hyea;Kwon O-Ii
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.325-335
    • /
    • 2005
  • Deterioration depths of rock slope due to freezing-thawing were calculated using the 1-D heat conductivity equation. The temperature distribution analysis was carried out using temperature distribution data for last two years of the five major cities such as Seoul, Daejeon, Pohang, Gwangju and Cangneung. The analysis was performed based on three different types of rocks, sandstone, granite and gneiss. This study has found that the deterioration depths tend to be greater with the increase of the thermal conductivity coefficient in Seoul, Daejeon and Pohang where showing relatively greater temperature deviations. Regarding the influence of rock types, deterioration depths turned out to be greater in Gwangju and Gangneung where show relatively smaller temperature deviations among the five cities, assuming these cities are on the granite with thermal conductivity of $55,200\;cal/m\timesday\times^{\circ}C$. In contrast, for the other rock types, cities of relatively geater temperature deviations show deeper deterioration depth than the others. Deterioration depths of rock slope in Korea due to freezing-thawing fumed out to be around 8.4 m to 10.7 m.

Development of Deterioration Restraining Agent Using Polycondensed Silicate and Monomers (실리케이트와 모노머합성을 통한 콘크리트 열화억제제 개발)

  • Kim, Do-Gyeum;Cho, Myeng-Suk;Song, Young-Chul;Kwak, Ju-Ho;Ryu, Gum-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.563-566
    • /
    • 2005
  • Concrete structures have been damaged by salt, carbonization, freezing and thawing and the others. Therefore, it is needed to protect durability and performance according to the appropriate materials and methods in the concrete structures. In general, several types of polymer and silicate are used as protecting deterioration agents of concrete structures, but these agents have many problems because of low durability and properties. In this study, It developed the deterioration restraining agent using polycondensed silicate and monomer that can block a deterioration cause such as $CO_2$ gas, salt and water from the outside and enhance waterproofing ability by reinforcing the concrete surface when applying it to concrete structures. Also, it developed the systems for improving concrete performance using a deterioration restraining agent.

  • PDF