• Title/Summary/Keyword: DETERIORATION TYPE

Search Result 510, Processing Time 0.023 seconds

Life Evaluation of Grease for Ball Bearings According to Temperature, Speed, and Load Changes (온도, 속도, 그리고 하중 변화에 따른 볼 베어링용 그리스의 수명평가)

  • Son, Jeonghoon;Kim, Sewoong;Choi, Byong Ho;Lee, Seungpyo
    • Tribology and Lubricants
    • /
    • v.37 no.1
    • /
    • pp.7-13
    • /
    • 2021
  • Ball bearing is a device that supports and transmits a load acting on a rotating shaft, and it is a type of rolling bearings that uses the rolling friction of the balls by inserting balls between the inner ring and the outer ring. Grease, which is prepared by mixing a thickener with a base oil, is a lubricant commonly used in bearings and has the advantage of a simple structure and easy handling. Bearings are increasingly being used in high value-added products such as semiconductors, aviation, and robots in the era of the 4th industrial revolution. Accordingly, there is an increasing demand for bearing grease. The selection of grease is an important factor in the bearing design. Therefore, a study must be conducted on the grease life evaluation to select an appropriate grease according to operating conditions such as a high temperature, high rotational speed, and high load. In this study, we evaluate the life of ball-bearing grease according to various operating conditions, namely, temperature, speed, and load changes. For this, we develop and theoretically verify a grease life test machine for ball bearings. We conduct a life test of grease according to various operating conditions of bearings and predict the grease life with a 10% and 50% failure probability using the Weibull analysis. In addition, we analyze the oxide characteristics of the grease over time using the Fourier transform infrared spectroscopy and the deterioration characteristics of the grease using the carbonyl index.

Salt and Pepper Noise Removal Algorithm based on Euclidean Distance Weight (유클리드 거리 가중치를 기반한 Salt and Pepper 잡음 제거 알고리즘)

  • Chung, Young-Su;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1637-1643
    • /
    • 2022
  • In recent years, the demand for image-processing technology in digital marketing has increased due to the expansion and diversification of the digital market, such as video, security, and machine intelligence. Noise-processing is essential for image-correction and reconstruction, especially in the case of sensitive noises, such as in CT, MRI, X-ray, and scanners. The two main salt and pepper noises have been actively studied, but the details and edges are still unsatisfactory and tend to blur when there is a lot of noise. Therefore, this paper proposes an algorithm that applies a weight-based Euclidean distance equation to the partial mask and uses only the non-noisy pixels that are the most similar to the original as effective pixels. The proposed algorithm determines the type of filter based on the state of the internal pixels of the designed partial mask and the degree of mask deterioration, which results in superior noise cancellation even in highly damaged environments.

Performances of Li-Ion Batteries Using LiNi1-x-yCoxMnyO2 as Cathode Active Materials in Frequency Regulation Application for Power Systems

  • Choi, Jin Hyeok;Kwon, Soon-Jong;Lim, Jungho;Lim, Ji-Hun;Lee, Sung-Eun;Park, Kwangyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.461-466
    • /
    • 2020
  • There are many application fields of electrical energy storage such as load shifting, integration with renewables, frequency or voltage supports, and so on. Especially, the frequency regulation is needed to stabilize the electric power system, and there have to be more than 1 GW as power reserve in Korea. Ni-rich layered oxide cathode materials have been investigated as a cathode material for Li-ion batteries because of their higher discharge capacity and lower cost than lithium cobalt oxide. Nonetheless, most of them have been investigated using small coin cells, and therefore, there is a limit to understand the deterioration mode of Ni-rich layered oxides in commercial high energy Li-ion batteries. In this paper, the pouch-type 20 Ah-scale Li-ion full cells are fabricated using Ni-rich layered oxides as a cathode and graphite as an anode. Above all, two test conditions for the application of frequency regulation were established in order to examine the performances of cells. Then, the electrochemical performances of two types of Ni-rich layered oxides are compared, and the long-term performance and degradation mode of the cell using cathode material with high nickel contents among them were investigated in the frequency regulation conditions.

Evaluation of Livestock Odor Reduction Efficiency for Odor Reduction Systems in Domestic Pig Farms (돈사용 스크러버 및 바이오커튼의 축산악취 저감효과 분석)

  • Lee, Minhyung;Yeo, Uk-hyeon;Lee, In-Bok;Jeong, Duek-young;Lee, Sang-yeon;Kim, Jun-gyu;Decano-Valentin, Cristina;Choi, Young-bae;Kang, Sol-moe
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.77-86
    • /
    • 2022
  • Various odor reduction systems are being operated at pig houses to improve livestock odor issues. However, the quantitative evaluation of odor reduction efficiency is not sufficiently conducted. The analysis of factors that affect the reduction efficiency also has not been sufficiently conducted. Therefore, in this study, the reduction efficiency of representative odor reduction facilities (bio-curtain, scrubber) operated by domestic pig houses was evaluated. The odor reduction efficiency was evaluated by sampling the air before and after the odor reduction facility in 6 pig houses. Livestock odors were evaluated for complex odors, ammonia, hydrogen sulfide, and VOC. To find factors for reduction efficiency, temperature, humidity, pH of washing resolution, type of washing water, and ventilation rate was measured. As a result, it was found that the scrubber system had the highest reduction efficiency. The reduction efficiency was found to be affected by the scrubber's washing resolution, filler, operating conditions, and size. Bio-curtains may have problems such as deterioration of fan performance due to ventilation fan load, groundwater pollution, and excessive use of groundwater.

Study on the transient flow induced by the windbreak transition regions in a railway subject to crosswinds

  • Zheng-Wei, Chen;Syeda Anam, Hashmi;Tang-Hong, Liu;Wen-Hui, Li;Zhuang, Sun;Dong-Run, Liu;Hassan, Hemida;Hong-Kang, Liu
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.309-322
    • /
    • 2022
  • Due to the complex terrain around high-speed railways, the windbreaks were established along different landforms, resulting in irregular windbreak transition regions between different subgrade infrastructures (flat ground, cutting, embankment, etc). In this paper, the effect of a windbreak transition on the wind flow around railways subjected to crosswinds was studied. Wind tunnel testing was conducted to study the wind speed change around a windbreak transition on flat ground with a uniform wind speed inflow, and the collected data were used to validate a numerical simulation based on a detached eddy simulation method. The validated numerical method was then used to investigate the effect of the windbreak transition from the flat ground to cutting (the "cutting" is a railway subgrade type formed by digging down from the original ground) for three different wind incidence angles of 90°, 75°, and 105°. The deterioration mechanism of the flow fields and the reasons behind the occurrence of the peak wind velocities were explained in detail. The results showed that for the windbreak transition on flat ground, the impact was small. For the transition from the flat ground to the cutting, the influence was relatively large. The significant increase in the wind speeds was due to the right-angle structure of the windbreak transition, which resulted in sudden changes of the wind velocity as well as the direction. In addition, the height mismatch in the transition region worsened the protective effect of a typical windbreak.

Seawater curing effects on the permeability of concrete containing fly ash

  • Hosseini, Seyed Abbas
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.205-214
    • /
    • 2022
  • Due to seawater's physical and chemical deterioration effects on concrete structures, it is crucial to investigate the durability of these structures in marine environments. In some conditions, concrete structures are exposed to seawater from the first days of construction or because of the lack of potable water, part of the concrete curing stage is done with seawater. In this research, the effects of exposure to seawater after 7 days of curing in standard conditions were evaluated. To improve the durability of concrete, fly ash has been used as a substitute for a part of the cement in the mixing design. For this purpose, 5, 15, and 30% of the mixing design cement were replaced with type F fly ash, and the samples were examined after curing in seawater. The resistance of concrete against chloride ion penetration based on the rapid chloride penetration test (RCPT), water permeability based on the depth of water penetration under pressure, and water absorption test was done. The changes in the compressive strength of concrete in different curing conditions were also investigated. The results show that the curing in seawater has slightly reduced concrete resistance to chloride ion permeation. In the long-term, samples containing FA cured in seawater had up to 10% less resistance to chloride ion penetration. The amount of reduction in chloride ion penetration resistance was more for samples without FA. Whiles, for both curing conditions in the long-term up to 15%, FA improved the chloride ion penetration resistance up to 40%. Curing in seawater slightly increased the penetration depth of water under pressure in samples containing FA, while this increase was up to 12% for samples without FA. In the long-term the compressive strength of samples cured in seawater is not much different from the compressive strength of samples cured in plain water, while at the age of 28 days, due to seawater salts' accelerating effects the difference is more noticeable.

Effect of coating with combined chitosan and gallic acid on shelf-life stability of Jeju black cattle beef

  • Van-Ba Hoa;Dong-Heon Song;Kuk-Hwan Seol;Yun-Seok Kim;Hyun-Wook Kim;In-Seon Bae;Soo-Hyun Cho
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.123-130
    • /
    • 2024
  • Objective: Beef of Jeju black cattle (JBC) is considered as a healthy meat type due to its significantly higher unsaturated fatty acids (UFA). Lipid (e.g., UFA) is highly susceptible to oxidizing agents, which results in the quality deterioration and economic value loss of meat products. Therefore, development and application of novel preservative techniques is necessary to improve the shelf-life stability of high-UFA beef. The objective of this study was to assess the applicability of chitosan-based coatings in preservation of JBC beef. Methods: Different coating solutions: 2% chitosan alone, and 2% chitosan containing 0.1% or 0.3% gallic acid were prepared to investigate their applicability in preservation of fresh beef during storage. Jeju black cattle beef (2-cm thick steaks) were non-coated (control) or coated with the above coating solutions, placed on trays, over-wrapped with plastic film and stored at 4℃. The microbiological indices, color, total volatile basic nitrogen (TVBN) and lipid oxidation of the beef were investigated after 1, 10, and 21 days of storage. Results: Coating with 2% chitosan alone reduced the spoilage bacteria count, TVBN and thiobarbituric acid reactive substances levels in the beef compared with control during storage (p<0.05). Noticeably, coating with 2% chitosan containing 0.1% or 0.3% gallic acid was more effective on retardation of spoilage bacteria growth, lipid oxidation and discoloration in the beef compared to the chitosan coating alone over the storage period (21 days) (p<0.05). Conclusion: Taken together, the combined chitosan and gallic acid coating could be used as a bio-preservative technique in the meat industry.

A Comparative Study of Deep Learning Techniques for Alzheimer's disease Detection in Medical Radiography

  • Amal Alshahrani;Jenan Mustafa;Manar Almatrafi;Layan Albaqami;Raneem Aljabri;Shahad Almuntashri
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.53-63
    • /
    • 2024
  • Alzheimer's disease is a brain disorder that worsens over time and affects millions of people around the world. It leads to a gradual deterioration in memory, thinking ability, and behavioral and social skills until the person loses his ability to adapt to society. Technological progress in medical imaging and the use of artificial intelligence, has provided the possibility of detecting Alzheimer's disease through medical images such as magnetic resonance imaging (MRI). However, Deep learning algorithms, especially convolutional neural networks (CNNs), have shown great success in analyzing medical images for disease diagnosis and classification. Where CNNs can recognize patterns and objects from images, which makes them ideally suited for this study. In this paper, we proposed to compare the performances of Alzheimer's disease detection by using two deep learning methods: You Only Look Once (YOLO), a CNN-enabled object recognition algorithm, and Visual Geometry Group (VGG16) which is a type of deep convolutional neural network primarily used for image classification. We will compare our results using these modern models Instead of using CNN only like the previous research. In addition, the results showed different levels of accuracy for the various versions of YOLO and the VGG16 model. YOLO v5 reached 56.4% accuracy at 50 epochs and 61.5% accuracy at 100 epochs. YOLO v8, which is for classification, reached 84% accuracy overall at 100 epochs. YOLO v9, which is for object detection overall accuracy of 84.6%. The VGG16 model reached 99% accuracy for training after 25 epochs but only 78% accuracy for testing. Hence, the best model overall is YOLO v9, with the highest overall accuracy of 86.1%.

Development of Smart Packaging for Cream Type Cosmetic (크림 제형 화장품용 스마트 패키징 기술 개발)

  • Jeon, Sooyeon;Moon, Byounggeoun;Oh, Jaeyoung;Kang, Hosang;Jang, Geun;Lee, Kisung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.79-87
    • /
    • 2019
  • The degree of cosmetic's oxidation depends on the storage conditions and external conditions when using the product. The microbial contamination and oxygen exposure often results in the quality deterioration of cosmetics. In addition, the problem is that consumers often use cream-type cosmetics, which have short expiration period (6-12 months), even after the product is expired. When using the deteriorated cosmetics, it can be fatal to consumers' safety including some symptoms such as folliculitis, rashes, edema, and dermatitis. Therefore, it is necessary to develop sealed smart packaging for cosmetics to prevent the deterioration of cosmetics and improve consumer safety. In this study, we have developed smart packaging design for cosmetics that can measure the surrounding environment and expiration date for the cosmetics in the real time. In addition, the smart packaging includes sensor, which are linked to the mobile application. Users can find out the measurement results through the application. Also, the packaging design and functions were set up based on the survey results by the user and feasible model can be produced based on user choice. The measurement in the three environment has been done after manufactured the sensor, PCB, and mobile application. As a result, it works normally within a certain range under all three environmental conditions. It is believed that the information on expiration dates and storage environment can be efficiently delivered to the consumers through developed cosmetics smart packaging and applications. The development of UI/UX design for consumer is further studied. The UX/UI design of the application plays an essential role in achieving this goal through the commercialization the cosmetic products in the wide range.

The Additional Effects of Various Materials on Microwave Heating Property of Frozen Dough (품질개량제 첨가가 냉동반죽의 Microwave 가열특성에 미치는 영향)

  • Kim, Eun-Mi;Han, Hye-Kyung;Kim, In-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.873-881
    • /
    • 2005
  • This study was conducted to improve the properties of frozen dough foods (buns and noodles etc.) on the quality deterioration with microwave oven cooking. Microwave is a useful cooking method, but it quickly takes moisture from food surface and makes lowering food quality abruptly. For improvement of these problems, mixing doughs with addition of various additives of 34 types manufactured respectively; starches, modified starches, gums and emulsifiers etc. Each mixing dough produced in sheet type $(30{\times}30{\times}1mm)$ and steamed them, was quickly froze at $-70^{\circ}C$ and packed with polyethylene. Packed samples kept at $-20^{\circ}C$ for 48 hours. After they were steam or microwave treatment packed or non-packed with polyethylene, studied for improvement effects of quality as sensory evaluation and selected 6 type additives; modified starches (TA, ST), gums (AR, GA) and emulsifiers (E, S1) as improvement agent. Because moisture loss from microwave oven cooking leads to quality deterioration of frozen dough foods, additive, such as including starches, modified starch, gums, and emusifiers were added to improve dough properties. Amylogram, scanning electron microscopy, textural analysis, and differential scanning calorimetry revealed addition of additives improved textural properties including surface-hardening of frozen dough foods compared to the control.