• Title/Summary/Keyword: DEMON Signal Processing

Search Result 4, Processing Time 0.18 seconds

Multiband Enhancement for DEMON Processing Algorithms (대역 분할 처리를 통한 데몬 처리 성능 향상 기법)

  • Cheong, Myoung Jun;Hwang, Soo Bok;Lee, Seung Woo;Kim, Jin Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.138-146
    • /
    • 2013
  • Passive sonars employ DEMON (Detection of Envelope Modulation on Noise) processing to extract propeller information from the radiated noise of underwater targets. Conventional DEMON processing improves SNR(Signal to Noise Ratio) characteristic by Welch method. The conventional Welch method overlaps several different time domain DEMON outputs to reduce the variance. However, the conventional methods have high computational complexity to get high SNR with correlated acoustic signals. In this paper, we propose new DEMON processing method that divides acoustic signal into several frequency bands before DEMON processing and averages each DEMON outputs. Therefore, the proposed method gathers independent acoustic signal faster than conventional method with low computational complexity. We prove the performance of the proposed method with mathematical analysis and computer simulations.

Study on Hidden Period Estimation in Propeller Noise by Applying Compressed Sensing to Auto-Correlation and Filter-Bank Structure (압축 센싱 기법을 자기상관 필터뱅크 방식에 적용한 광대역 프로펠러 소음 추정 기법 연구)

  • Lim, Jun-Seok;Pyeon, Yong-Guk;Hong, Woo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2476-2484
    • /
    • 2015
  • Narrow band signal estimation and broad band signal estimation can be used to detect the ship-radiated noise. The broad band signal estimation method to detect the ship-radiated noise is called DEMON (Detection of Envelop Modulation On Noise). This paper proposes a new DEMON algorithm applying compressed sensing algorithm to filter bank and autocorrelation. We show the proposed algorithm estimates the hidden period in the wide band signal better than the conventional DEMON algorithm and the recently proposed filter-bank based DEMON algorithm. Especially we show that the proposed algorithm needs shorter data length than the conventional DEMON algorithm.

Hidden Period Estimation in the Broad Band Propeller Noise Using Auto-Correlation and Filter-Bank Structure (자기상관과 필터뱅크 방식을 적용한 광대역 프로펠러 소음 추정 기법 연구)

  • Lim, Jun-Seok;Hong, Woo-Young;Pyeon, Yong-Guk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.8
    • /
    • pp.538-543
    • /
    • 2014
  • Narrow band signal estimation and broad band signal estimation can be used to detect the ship-radiated noise. The broad band signal estimation method to detect the ship-radiated noise is called DEMON (Detection of Envelop Modulation On Noise). This paper proposes a new DEMON algorithm using filter bank and autocorrelation. We show the proposed algorithm estimates the hidden period in the wide band signal better than the conventional DEMON algorithm and the recently proposed filter-bank based DEMON algorithm.

Cavitation Noise Detection Method using Continuous Wavelet Transform and DEMON Signal Processing (연속 웨이브렛 변환 및 데몬 신호처리를 이용한 캐비테이션 소음 검출 방법)

  • Lee, Hee-chang;Kim, Tae-hyeong;Sohn, Kwon;Lee, Phil-ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.505-513
    • /
    • 2017
  • Cavitation is a phenomenon caused by vapour cavities that is produced in rapid pressure changes. When the cavitation happened, the sound pressure level of a underwater radiated noise is increased rapidly. As a result, it can increase the probability of the identification or classification of a our warship's acoustic signature by an enemy ship. However, there is a problem that it is hard to precisely detect the occurrence of a cavitation noise. Therefore, this paper presents recent improvements in terms of the cavitation noise measurement by using continuous wavelet transform and DEMON(Detection of Envelope Modulation on Noise) signal processing. Then, we present that the suggested scheme is more suitable for detecting the cavitation than existing algorithms.