• 제목/요약/키워드: DEM resolution

검색결과 302건 처리시간 0.028초

Accuracy Improvement of KOMPSAT-3 DEM Using Previous DEMs without Ground Control Points

  • Lee, Hyoseong;Park, Byung-Wook;Ahn, Kiweon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제35권4호
    • /
    • pp.241-248
    • /
    • 2017
  • GCPs (Ground Control Points) are needed to correct the DEM (Digital Elevation Model) produced from high-resolution satellite images and the RPC (Rational Polynomial Coefficient). It is difficult to acquire the GCPs through field surveys such as GPS surveys and to read the image coordinates corresponding to the GCPs. In addition, GCPs cannot cover the entire image of the test site, and the RPC correction results may be influenced by the arrangement and distribution of the GCPs in the image. Therefore, a new method for the RPC correction is needed. In this study, an LHD (Least-squares Height Difference) DEM matching method was applied using previous DEMs: SRTM DEM, digital map DEM, and corrected IKONOS DEM. This was carried out to correct the DEM produced from KOMPSAT-3 satellite images and the provided RPC without GCPs. The IKONOS DEM had the highest accuracy, and the height accuracy was about ${\pm}3m$ RMSE in a mountainous area and about ${\pm}2m$ RMSE in an area with only low heights.

Accuracy Investigation of DEM generated from Heterogeneous Stereo Satellite Images using Rational Polynomial Coefficients (RPC를 이용한 이종센서 위성영상으로부터의 수치고도모형 정확도 평가)

  • Song, Yeong-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • 제22권3호
    • /
    • pp.121-128
    • /
    • 2014
  • This study investigated the accuracy of DEM generated by heterogeneous stereo satellite images based on RPC. Heterogeneous sensor images with different spatial resolution are SPOT-5 panchromatic and IKONOS images. For the accuracy evaluation of the DEM, we compared the DEMs generated from two kinds of sensors and that produced using homogeneous SPOT-5 and IKONOS stereo images. As results of the evaluation, accuracy of 3D positioning by heterogeneous images was substantially similar to that of homogeneous stereo images for exact conjugate points. But, in terms of quality of the DEM, DEM generated by heterogeneous sensor showed a lower accuracy about twice in RMSE and about 3 times in LE90 than that of homogeneous sensors. As a result, DEM can be generated by using heterogenous satellite imagery. But if we use a stereo image with different spatial resolution, the performance of image matching was very important factor for the production of high-quality DEM.

A Study on DEM Generation from Kompsat-3 Stereo Images (아리랑 3호 스테레오 위성영상의 DEM 제작 성능 분석)

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제32권1호
    • /
    • pp.19-27
    • /
    • 2014
  • Kompsat-3 is an optical high-resolution earth observation satellite launched in May 2012. In addition to its 0.7m spatial resolution, Kompsat-3 is capable of in-track stereo acquisition enabling quality Digital Elevation Model(DEM) generation. Typical DEM generation procedure requires accurate control points well-distributed over the entire image region. But we often face difficult situations especially when the area of interests is oversea or inaccessible area. One solution to this is to use existing geospatial data even though they only cover a part of the image. This paper aimed to assess accuracy of DEM from Kompsat-3 with different scenarios including no control point, Rational Polynomial Coefficients(RPC) relative adjustment, and RPC adjustment with control points. Experiments were carried out for Kompsat-3 stereo data in USA. We used Digital Orthophoto Quadrangle(DOQ) and Shuttle Radar Topography Mission(SRTM) as control points sources. The generated DEMs are compared to a LiDAR DEM for accuracy assessment. The test results showed that the relative RPC adjustment significantly improved DEM accuracy without any control point. And comparable DEM could be derived from single control point from DOQ and SRTM, showing 7 meters of mean elevation error.

Suggestion of Slope Evaluation by DEM-based Aggregation Method (DEM 기반 조합방법에 의한 경사도 평가기법의 제안)

  • Lee, Geun Sang;Choi, Yun Woong;Cho, Gi-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제26권6D호
    • /
    • pp.1019-1023
    • /
    • 2006
  • The slope information based on DEM is very useful for urban planning, landscape, road design and water resource areas such as rainfall-runoff and soil erosion estimation. The resolution of slope, which is from DEM, can be variously decided by an application fields and the kinds of modeling method. In particular, the more decreased resolution makes the more decreased slope value because of the increased horizontal distance. This study presents slope evaluation method by aggregation method based on discharge and Manning's velocity equation to advance the loss of slope information in according to the resolution, and then applied it to calculate topographic factors of soil erosion model. As a result, conventional method shows 34.8% errors but aggregation method shows 12.6% errors. This study selected up-, middle-, and downstream region in watershed and analyzed the capability of aggregation method in order to estimate the influence of topographic characteristics. As a result of estimation, aggregation method shows more advanced results than conventional method. Therefore, the slope evaluation method by aggregation method can improve efficiently the loss of slope information in according to the variation of resolution in water resource area such as rainfall-runoff model.

The Resolution of the Digital Terrain Index for the Prediction of Soil Moisture (토양수분 예측을 위한 수치지형 인자와 격자 크기에 대한 연구)

  • Han, Ji-Young;Kim, Sang-Hyun;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • 제36권2호
    • /
    • pp.251-261
    • /
    • 2003
  • The resolution issue of various soil moisture prediction parameters such as wetness index and curvatures is addressed. The sensitivities of various index are discussed on the base of the statistical aspects. The statistical analysis of three flow determination algorithms on the DEM is performed. The upslope area associated with SFD algorithm appear to more sensitive than the parameters of the other algorithms(MFD, DEMON). The wetness index shows relatively less variation both in resolution and the calculation Procedures.

Improvement of 2-pass DInSAR-based DEM Generation Method from TanDEM-X bistatic SAR Images (TanDEM-X bistatic SAR 영상의 2-pass 위성영상레이더 차분간섭기법 기반 수치표고모델 생성 방법 개선)

  • Chae, Sung-Ho
    • Korean Journal of Remote Sensing
    • /
    • 제36권5_1호
    • /
    • pp.847-860
    • /
    • 2020
  • The 2-pass DInSAR (Differential Interferometric SAR) processing steps for DEM generation consist of the co-registration of SAR image pair, interferogram generation, phase unwrapping, calculation of DEM errors, and geocoding, etc. It requires complicated steps, and the accuracy of data processing at each step affects the performance of the finally generated DEM. In this study, we developed an improved method for enhancing the performance of the DEM generation method based on the 2-pass DInSAR technique of TanDEM-X bistatic SAR images was developed. The developed DEM generation method is a method that can significantly reduce both the DEM error in the unwrapped phase image and that may occur during geocoding step. The performance analysis of the developed algorithm was performed by comparing the vertical accuracy (Root Mean Square Error, RMSE) between the existing method and the newly proposed method using the ground control point (GCP) generated from GPS survey. The vertical accuracy of the DInSAR-based DEM generated without correction for the unwrapped phase error and geocoding error is 39.617 m. However, the vertical accuracy of the DEM generated through the proposed method is 2.346 m. It was confirmed that the DEM accuracy was improved through the proposed correction method. Through the proposed 2-pass DInSAR-based DEM generation method, the SRTM DEM error observed by DInSAR was compensated for the SRTM 30 m DEM (vertical accuracy 5.567 m) used as a reference. Through this, it was possible to finally create a DEM with improved spatial resolution of about 5 times and vertical accuracy of about 2.4 times. In addition, the spatial resolution of the DEM generated through the proposed method was matched with the SRTM 30 m DEM and the TanDEM-X 90m DEM, and the vertical accuracy was compared. As a result, it was confirmed that the vertical accuracy was improved by about 1.7 and 1.6 times, respectively, and more accurate DEM generation was possible with the proposed method. If the method derived in this study is used to continuously update the DEM for regions with frequent morphological changes, it will be possible to update the DEM effectively in a short time at low cost.

Generation of High-Resolution Precise DEMs Through Airborne LIDAR Surveys on Huge Antarctic Regions

  • Lee Imp-yeong;CHOI Yun-soo;Lee, Jae-one
    • Korean Journal of Geomatics
    • /
    • 제3권2호
    • /
    • pp.115-122
    • /
    • 2004
  • NASA, NSF and USGS jointly conducted airborne LIDAR surveys to acquire numerous surface points with high densities over the Antarctic Dry Valleys and its vicinity, The huge set of these points retains two characteristics undesirable for DEM generation, which are unusually high blunder ratio and large variation of the local point densities. Hence, in order to not only reduce the undesirable effects due to these characteristics but also process the huge number of points within reasonable limits of time and resources, we developed an efficient, robust, nearly automatic approach to DEM generation. This paper reports about the application of this approach to generating high-resolution precise DEMs from the Antarctic LIDAR surveys and the evaluation of their accuracy.

  • PDF

GEOMETRIC COREGISTRATION FOR TERRASAR-X INTERFEROMETRY

  • Yoon, Geun-Won;Kim, Sang-Wan;Lee, Yong-Woong;Won, loong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.251-254
    • /
    • 2008
  • The German radar satellite TerraSAR was launched in 2007. In this study, interferogram is generated using TerraSAR-X data and DEM (Digital Elevation Model). Coregistration procedures used with SAR images (i.e. master and slave) in traditional method results in serious errors for high resolution TerraSARX data because of the mutual shift of the master and slave images due to topography. This error becomes more serious in mountainous areas in which the coherence between interferometric pairs is relatively low. Here we processed a geometric coregistration with DEM exploiting height information. Through the method, interferometry processing is fulfilled to generate a qualified interferogram and coherence is improved. This approach will help high resolution X-band SAR interferometry in mountainous area.

  • PDF

A Study on the GCP and DEM Accuracy Evaluation of SPOT Image Using GPS (GPS를 이용한 SPOT 영상의 GCP 및 DEM 정확도 평가)

  • 윤희천;이용욱
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제22권1호
    • /
    • pp.73-80
    • /
    • 2004
  • The purpose of this study is the GCP/DEM estimations through satellite stereo image interpretation using GPS. We carried out GPS observation fixing first order control points and GPS permanent stations. Comparing static surveying and kinematic surveying, we analysed the surveying methods for GCP and DEM estimations. As the results, considering SPOT image spatial resolution, the DEM can be made through satellite stereo image interpretation.

DEM Generation by Interval Matching Method of High Resolution Imagery (고해상도 위성영상의 인터벌 정합방법에 의한 DEM 제작)

  • Lee, Hyo-Seong;Park, Byung-Uk;Ahn, Ki-Weon
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 한국GIS학회 2008년도 공동추계학술대회
    • /
    • pp.247-248
    • /
    • 2008
  • 본 연구는 IKONOS 입체 위성영상에서 정합시간 단축을 위한 인터벌 정합방법을 제안하였다. 그 결과, 산림지역을 제외한 나머지 지역에서 인터벌을 주지 않고 정합한 경우와 큰 차이를 보이지 않았다.

  • PDF