• Title/Summary/Keyword: DEM resolution

Search Result 302, Processing Time 0.025 seconds

Building the Irrigated Area and Canal Network of Agricultural Reservoir Based on High-Resolution Images (고해상도 영상기반 농업용 저수지 수혜면적 및 수로 네트워크 구축)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Jung, In-Kyun;Bae, Kyoung-Ho;Cho, Jung-ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.29-29
    • /
    • 2021
  • 최근 물 사용에 대한 각 부문 간의 경쟁이 심화되고 있으며, 미래 기후변화에 대응하기 위해 체계적이고 효율적인 수자원 활용이 요구되고 있다. 농업용수는 우리나라 수자원의 40% 이상을 차지하고 있지만, 생활용수, 공업용수와 달리 경험에 기반한 관행적 관리가 이루어지고 있어 체계적인 관리가 필요하다. 농업용수의 체계적 관리와 분석을 위해 최신화된 수혜면적 파악 및 수혜구역 내 수로 네트워크 구축은 필수적 요소이다. 현재 활용하고 있는 농업용 저수지 수혜면적 및 수로 자료는 한국농어촌공사의 RIMS 자료를 기반으로 하고 있다. 하지만 기존 자료의 경우 준공 당시 설계기준으로 작성되거나 수년 전 갱신된 자료로 최신현황을 반영하지 못하고 있다. 이러한 문제점을 보완하기 위해 직접 측량을 통한 자료 취득 또는 농림축산식품부의 스마트팜맵과 같은 대체, 보완자료가 활용되고 있다. 직접 측량의 경우 최신화된 정확한 자료 취득이 가능하지만, 많은 시간이 소요되며, 스마트팜맵의 경우 취득 주기가 1~2년으로 주기에 따라 최신자료의 활용이 어려울 수 있다. 본 연구에서는 자료 산정 시간 단축 및 최신자료 취득을 위해 고해상도 영상을 활용하고자 하였으며, 여주시 삼합저수지를 대상으로 검증하였다. 영상자료로는 위성영상, 항공영상, 드론영상을 활용하였으며, 위성영상의 경우 구글어스 프로의 2020년 11월 고해상도 영상, 국토리지정보원의 2019~2020년 51cm급 항공 영상, 2020년 10월 촬영한 4cm급 드론영상을 사용하였다. 수혜면적 산정은 기존 RIMS 자료와 스마트팜맵을 통해 확인한 수혜면적에서 영상을 통해 확인한 토지이용 변경지역을 추출하여 재산정하였으며, 수로 네트워크의 경우 RIMS 자료를 기반으로 드론영상을 통해 확인된 수로 추가 및 DEM (Digital Elevation Model) 영상을 활용한 용수 흐름도 작성을 통해 구축하였다. 본 연구에서 재산정한 수혜면적과 수로 네트워크는 정확한 용수 수요량 및 공급량 산정, 관개 효율 분석 등과 같은 농업용수 분석 전반에 기초자료로 활용 가능할 것으로 판단된다.

  • PDF

Development of Spatial Statistical Downscaling Method for KMA-RCM by Using GIS (GIS를 활용한 KMA-RCM의 규모 상세화 기법 개발 및 검증)

  • Baek, Gyoung-Hye;Lee, Moun-Gjin;Kang, Byung-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.136-149
    • /
    • 2011
  • The aim of this study is to develop future climate scenario by downscaling the regional climate model (RCM) from global climate model (GCM) based on IPCC A1B scenario. To this end, the study first resampled the KMA-RCM(Korea meteorological administration-regional climate model) from spatial resolution of 27km to 1km. Second, observed climatic data of temperature and rainfall through 1971-2000 were processed to reflect the temperature lapse rate with respect to the altitude of each meteorological observation station. To optimize the downscaled results, Co-kriging was used to calculate temperature lapse-rate; and IDW was used to calculate rainfall lapse rate. Fourth, to verify results of the study we performed correlation analysis between future climate change projection data and observation data through the years 2001-2010. In this study the past climate data (1971-2000), future climate change scenarios(A1B), KMA-RCM(Korea meteorological administration-regional climate model) results and the 1km DEM were used. The research area is entire South Korea and the study period is from 1971 to 2100. Monthly mean temperatures and rainfall with spatial resolution of 1km * 1km were produced as a result of research. Annual average temperature and precipitation had increased by $1.39^{\circ}C$ and 271.23mm during 1971 to 2100. The development of downscaling method using GIS and verification with observed data could reduce the uncertainty of future climate change projection.

The Use of the Unified Control Points for RPC Adjustment of KOMPSAT-3 Satellite Image (KOMPSAT-3 위성영상의 RPC보정을 위한 국가 통합기준점의 활용)

  • Ahn, Kiweon;Lee, Hyoseong;Seo, Doochun;Park, Byung-Wook;Jeong, Dongjang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.539-550
    • /
    • 2014
  • High resolution satellite images have to be oriented and geometrically processed from GCPs(Ground Control Points) to generate precise DEMs(Digital Elevation Models) and topographic maps. In Korea, thousands of national UCPS(Unified Control Points) are established and distributed all over the country by the Korean NGII(National Geographic Information Institute). For that reason, UCPs can be easily searched and downloaded by the national-control-point-record-issues system. Following the study, we suggested the sky-view and road-view from web-portals for searching and identifying UCPs on the images. To evaluate the usefulness of UCPs in RPCs(rational polynomial coefficients) adjustment of the high resolution satellite images, the one UCP, which of using simple the control point, has been applied to adjust the vendor-provided RPCs of the KOMPSAT-3 images. As a result, the positioning error of corrected RPCs was approximately one pixel and one meter. From this experiment, we conclude that the UCPs will be able to replace the survey GCPs for mapping with the satellite images or aerial images.

Overview of new developments in satellite geophysics in 'Earth system' research

  • Moon Wooil M.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.3-17
    • /
    • 2004
  • Space-borne Earth observation technique is one of the most cost effective and rapidly advancing Earth science research tools today and the potential field and micro-wave radar applications have been leading the discipline. The traditional optical imaging systems including the well known Landsat, NOAA - AVHRR, SPOT, and IKONOS have steadily improved spatial imaging resolution but increasing cloud covers have the major deterrent. The new Earth observation satellites ENVISAT (launched on March 1 2002, specifically for Earth environment observation), ALOS (planned for launching in 2004 - 2005 period and ALOS stands for Advanced Land Observation Satellite), and RADARSAT-II (planned for launching in 2005) all have synthetic aperture radar (SAR) onboard, which all have partial or fully polarimetric imaging capabilities. These new types of polarimetric imaging radars with repeat orbit interferometric capabilities are opening up completely new possibilities in Earth system science research, in addition to the radar altimeter and scatterometer. The main advantage of a SAR system is the all weather imaging capability without Sun light and the newly developed interferometric capabilities, utilizing the phase information in SAR data further extends the observation capabilities of directional surface covers and neotectonic surface displacements. In addition, if one can utilize the newly available multiple frequency polarimetric information, the new generation of space-borne SAR systems is the future research tool for Earth observation and global environmental change monitoring. The potential field strength decreases as a function of the inverse square of the distance between the source and the observation point and geophysicists have traditionally been reluctant to make the potential field observation from any space-borne platforms. However, there have recently been a number of potential field missions such as ASTRID-2, Orsted, CHAMP, GRACE, GOCE. Of course these satellite sensors are most effective for low spatial resolution applications. For similar objects, AMPERE and NPOESS are being planned by the United States and France. The Earth science disciplines which utilize space-borne platforms most are the astronomy and atmospheric science. However in this talk we will focus our discussion on the solid Earth and physical oceanographic applications. The geodynamic applications actively being investigated from various space-borne platforms geological mapping, earthquake and volcano .elated tectonic deformation, generation of p.ecise digital elevation model (DEM), development of multi-temporal differential cross-track SAR interferometry, sea surface wind measurement, tidal flat geomorphology, sea surface wave dynamics, internal waves and high latitude cryogenics including sea ice problems.

  • PDF

Scenario-based Flood Disaster Simulation of the Rim Collapse of the Cheon-ji Caldera Lake, Mt. Baekdusan (시나리오에 따른 백두산 천지의 외륜산 붕괴에 의한 홍수재해 모의)

  • Lee, Khil-Ha;Kim, Sang-Hyun;Choi, Eun-Kyeong;Kim, Sung-Wook
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.501-510
    • /
    • 2014
  • Volcanic eruptions alone may lead to serious natural disasters, but the associated release of water from a caldera lake may be equally damaging. There is both historical and geological evidence of the past eruptions of Mt. Baekdusan, and the volcano, which has not erupted for over 100 years, has recently shown signs of reawakening. Action is required if we are to limit the social, political, cultural, and economic damage of any future eruption. This study aims to identify the area that would be inundated following a volcanic flood from the Cheon-Ji caldera lake that lies within Mt. Baekdusan. A scenario-based numerical analysis was performed to generate a flood hydrograph, and the parameters required were selected following a consideration of historical records from other volcanoes. The amount of water at the outer rim as a function of time was used as an upper boundary condition for the downstream routing process for a period of 10 days. Data from the USGS were used to generate a DEM with a resolution of 100 m, and remotely sensed satellite data from the moderate-resolution imaging spectroradiometer (MODIS) were used to show land cover and use. The simulation was generated using the software FLO-2D and was superposed on the remotely sensed map. The results show that the inundation area would cover about 80% of the urban area near Erdaobaihezhen assuming a 10 m/hr collapse rate, and 98% of the area would be flooded assuming a 100 m/hr collapse rate.

Study of the UAV for Application Plans and Landscape Analysis (UAV를 이용한 경관분석 및 활용방안에 관한 기초연구)

  • Kim, Seung-Min
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.213-220
    • /
    • 2014
  • This is the study to conduct the topographical analysis using the orthophotographic data from the waypoint flight using the UAV and constructed the system required for the automatic waypoint flight using the multicopter.. The results of the waypoint photographing are as follows. First, result of the waypoint flight over the area of 9.3ha, take time photogrammetry took 40 minutes in total. The multicopter have maintained the certain flight altitude and a constant speed that the accurate photographing was conducted over the waypoint determined by the ground station. Then, the effect of the photogrammetry was checked. Second, attached a digital camera to the multicopter which is lightweight and low in cost compared to the general photogrammetric unmanned airplane and then used it to check its mobility and economy. In addition, the matching of the photo data, and production of DEM and DXF files made it possible to analyze the topography. Third, produced the high resolution orthophoto(2cm) for the inside of the river and found out that the analysis is possible for the changes in vegetation and topography around the river. Fourth, It would be used for the more in-depth research on landscape analysis such as terrain analysis and visibility analysis. This method may be widely used to analyze the various terrains in cities and rivers. It can also be used for the landscape control such as cultural remains and tourist sites as well as the control of the cultural and historical resources such as the visibility analysis for the construction of DSM.

Downscaling of Sunshine Duration for a Complex Terrain Based on the Shaded Relief Image and the Sky Condition (하늘상태와 음영기복도에 근거한 복잡지형의 일조시간 분포 상세화)

  • Kim, Seung-Ho;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.233-241
    • /
    • 2016
  • Experiments were carried out to quantify the topographic effects on attenuation of sunshine in complex terrain and the results are expected to help convert the coarse resolution sunshine duration information provided by the Korea Meteorological Administration (KMA) into a detailed map reflecting the terrain characteristics of mountainous watershed. Hourly shaded relief images for one year, each pixel consisting of 0 to 255 brightness value, were constructed by applying techniques of shadow modeling and skyline analysis to the 3m resolution digital elevation model for an experimental watershed on the southern slope of Mt. Jiri in Korea. By using a bimetal sunshine recorder, sunshine duration was measured at three points with different terrain conditions in the watershed from May 15, 2015 to May 14, 2016. The brightness values of the 3 corresponding pixel points on the shaded relief map were extracted and regressed to the measured sunshine duration, resulting in a brightness-sunshine duration response curve for a clear day. We devised a method to calibrate this curve equation according to sky condition categorized by cloud amount and used it to derive an empirical model for estimating sunshine duration over a complex terrain. When the performance of this model was compared with a conventional scheme for estimating sunshine duration over a horizontal plane, the estimation bias was improved remarkably and the root mean square error for daily sunshine hour was 1.7hr, which is a reduction by 37% from the conventional method. In order to apply this model to a given area, the clear-sky sunshine duration of each pixel should be produced on hourly intervals first, by driving the curve equation with the hourly shaded relief image of the area. Next, the cloud effect is corrected by 3-hourly 'sky condition' of the KMA digital forecast products. Finally, daily sunshine hour can be obtained by accumulating the hourly sunshine duration. A detailed sunshine duration distribution of 3m horizontal resolution was obtained by applying this procedure to the experimental watershed.

Study of Rainfall-Runoff Variation by Grid Size and Critical Area (격자크기와 임계면적에 따른 홍수유출특성 변화)

  • Ahn, Seung-Seop;Lee, Jeung-Seok;Jung, Do-Joon;Han, Ho-Chul
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.523-532
    • /
    • 2007
  • This study utilized the 1/25,000 topographic map of the upper area from the Geum-ho watermark located at the middle of Geum-ho river from the National Geographic Information Institute. For the analysis, first, the influence of the size of critical area to the hydro topographic factors was examined changing grid size to $10m{\times}10m,\;30m{\times}30m\;and\;50m{\times}50m$, and the critical area for the formation of a river to $0.01km^2{\sim}0.50km^2$. It is known from the examination result of watershed morphology according to the grid size that the smaller grid size, the better resolution and accuracy. And it is found, from the analysis result of the degree of the river according to the minimum critical area for each grid size, that the grid size does not affect on the degree of the river, and the number of rivers with 2nd and higher degree does not show remarkable difference while there is big difference in the number of 1st degree rivers. From the results above, it is thought that the critical area of $0.15km^2{\sim}0.20km^2$ is appropriate for formation of a river being irrelevant to the grid size in extraction of hydro topographic parameters that are used in the runoff analysis model using topographic maps. Therefore, the GIUH model applied analysis results by use of the river level difference law proposed in this study for the explanation on the outflow response-changing characters according to the decision of a critical value of a minimum level difference river, showed that, since an ogival occurrence time and an ogival flow volume are very significant in a flood occurrence in case of not undertow facilities, the researcher could obtain a good result for the forecast of river outflow when considering a convenient application of the model and an easy acquisition of data, so it's judged that this model is proper as an algorism for the decision of a critical value of a river basin.

Analysis of the Geological Structure of the Hwasan Caldera Using Potential Data (포텐셜 자료해석을 통한 화산칼데라 구조 해석)

  • Park, Gye-Soon;Yoo, Hee-Young;Yang, Jun-Mo;Lee, Heui-Soon;Kwon, Byung-Doo;Eom, Joo-Young;Kim, Dong-O;Park, Chan-Hong
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • A geophysical mapping was performed for Hwasan caldera which is located in Euisung Sub-basin of the southeastern part of the Korean Peninsula. In order to overcome the limitation of the previous studies, remote sensing technic was used and dense potential data were obtained and analyzed. First, we analyzed geological lineament for target area using geological map, digital elevation model (DEM) data and satellite imagery. The results were greatly consistent with the previous studies, and showed that N-S and NW-SE direction are the most dominant one in target area. Second, based on the lineament analysis, highly dense gravity data were acquired in Euisung Sub-basin and an integrated interpretation considering air-born magnetic data was made to investigate the regional structure of the target area. The results of power spectrum analysis for the acquired potential data revealed that the subsurface of Euisung Sub-basin have two density discontinuities at about 1 km and 3-5 km depth. A 1 km depth discontinuity is thought as the depth of pyroclastic sedimentary rocks or igneous rocks which were intruded at the ring vent of Hwasan caldera, while a 3-5 km depth discontinuity seems to be associated with the depth of the basin basement. In addition, three-dimensional gravity inversion for the total area of Euisung Sub-basin was carried out, and the inversion results indicated two followings; 1) Cretaceous Palgongsan granite and Bulguksa intrusion rocks, which are located in southeastern part and northeastern part of Euisung Sub-basin, show two major low density anomalies, 2) pyroclastic rocks around Hwasan caldera also have lower density when compared with those of neighborhood regions and are extended to 1.5 km depth. However, a poor vertical resolution of potential survey makes it difficult to accurately delineate the detailed structure caldera which has a vertically developed characteristic in general. To overcome this limitation, integrated analysis was carried out using the magnetotelluric data on the corresponding area with potential data and we could obtain more reasonable geologic structure.

Estimation of Near Surface Air Temperature Using MODIS Land Surface Temperature Data and Geostatistics (MODIS 지표면 온도 자료와 지구통계기법을 이용한 지상 기온 추정)

  • Shin, HyuSeok;Chang, Eunmi;Hong, Sungwook
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2014
  • Near surface air temperature data which are one of the essential factors in hydrology, meteorology and climatology, have drawn a substantial amount of attention from various academic domains and societies. Meteorological observations, however, have high spatio-temporal constraints with the limits in the number and distribution over the earth surface. To overcome such limits, many studies have sought to estimate the near surface air temperature from satellite image data at a regional or continental scale with simple regression methods. Alternatively, we applied various Kriging methods such as ordinary Kriging, universal Kriging, Cokriging, Regression Kriging in search of an optimal estimation method based on near surface air temperature data observed from automatic weather stations (AWS) in South Korea throughout 2010 (365 days) and MODIS land surface temperature (LST) data (MOD11A1, 365 images). Due to high spatial heterogeneity, auxiliary data have been also analyzed such as land cover, DEM (digital elevation model) to consider factors that can affect near surface air temperature. Prior to the main estimation, we calculated root mean square error (RMSE) of temperature differences from the 365-days LST and AWS data by season and landcover. The results show that the coefficient of variation (CV) of RMSE by season is 0.86, but the equivalent value of CV by landcover is 0.00746. Seasonal differences between LST and AWS data were greater than that those by landcover. Seasonal RMSE was the lowest in winter (3.72). The results from a linear regression analysis for examining the relationship among AWS, LST, and auxiliary data show that the coefficient of determination was the highest in winter (0.818) but the lowest in summer (0.078), thereby indicating a significant level of seasonal variation. Based on these results, we utilized a variety of Kriging techniques to estimate the surface temperature. The results of cross-validation in each Kriging model show that the measure of model accuracy was 1.71, 1.71, 1.848, and 1.630 for universal Kriging, ordinary Kriging, cokriging, and regression Kriging, respectively. The estimates from regression Kriging thus proved to be the most accurate among the Kriging methods compared.