• Title/Summary/Keyword: DEHYDROGENASE

Search Result 2,844, Processing Time 0.028 seconds

Effect of mixed plant-extract powder on the regulation of differentiation and oxidative stress-induced apoptosis in C2C12 cells (식물 추출물 혼합 분말이 C2C12 세포 내 분화 및 산화적 스트레스 유발 세포사멸 조절에 미치는 효과)

  • Se-Eun Park;Dabin Choi;Kyo-nyeo Oh;Hanjoong Kim;Hyungbum Park;Ki-Man Kim
    • Food Science and Preservation
    • /
    • v.31 no.2
    • /
    • pp.298-306
    • /
    • 2024
  • This study evaluated the differentiation and protective effects of mixed plant-extract powder in C2C12 muscle cells. Cells were differentiated into myotubes in 2% horse serum (HS)-containing medium with mixed plant-extract powder (MPEP) for 6 days. Treatment with MPEP increased the expression of myogenin and myosin heavy chain (MHC) protein in cells compared with non-treated cells. Differentiated cells were pretreated with MPEP, and hydrogen peroxide (H2O2). Our results revealed that treatment with MPEP before H2O2 treatment increased cell viability and decreased H2O2-induced lactate dehydrogenase (LDH) and creatine kinase (CK). In addition, MPEP attenuated H2O2-induced upregulation of Bax, downregulation of Bcl-2, and activation of caspase-9 and -3. These results suggest the MPEP can stimulate C2C12 muscle cell differentiation into myotubes and observe the protective effect of mixed plant-extract powder against muscle oxidative stress. In conclusion, MPEP may be useful as a prevention and treatment material for skeletal muscle disease caused by age-related diseases.

Induction of apoptosis using the mixture of fucoidan and Crepidiastrum denticulatum extract in HepG2 liver cancer cells (후코이단/이고들빼기 혼합물에 의한 HepG2 간암세포의 apoptosis 유도)

  • Se-Eun Park;Dabin Choi;Kyo-nyeo Oh;Hanjoong Kim;Hyungbum Park;Ki-Man Kim
    • Food Science and Preservation
    • /
    • v.31 no.2
    • /
    • pp.276-286
    • /
    • 2024
  • In the present study, we investigated whether a mixture of fucoidan and Crepidiastrum denticulatum extract (FCE) had the potential to improve the therapeutic efficacy of cancer treatment. The results demonstrated that FCE significantly reduced cell viability and induced the release of LDH (lactate dehydrogenase) and DNA fragmentation in HepG2 cells in a dose-dependent manner. In addition, FCE treatment also increased the protein expression level of p53, the release of cytochrome c, and the loss of mitochondrial membrane potential. Moreover, FCE dose-dependently increased protein expression levels of Bax, and cleaved caspase-3 and -9. However, FCE decreased the protein expression level of Bcl-2. These results suggest that FCE inhibits cell proliferation and induces apoptosis via the mitochondrial-mediated intrinsic pathway. The present study demonstrates that FCE can be used as an anti-cancer agent for liver cancer based on apoptosis mechanism.

Imaging-Based Versus Pathologic Survival Stratifications of Diffuse Glioma According to the 2021 WHO Classification System

  • So Jeong Lee;Ji Eun Park;Seo Young Park;Young-Hoon Kim;Chang Ki Hong;Jeong Hoon Kim;Ho Sung Kim
    • Korean Journal of Radiology
    • /
    • v.24 no.8
    • /
    • pp.772-783
    • /
    • 2023
  • Objective: Imaging-based survival stratification of patients with gliomas is important for their management, and the 2021 WHO classification system must be clinically tested. The aim of this study was to compare integrative imaging- and pathology-based methods for survival stratification of patients with diffuse glioma. Materials and Methods: This study included diffuse glioma cases from The Cancer Genome Atlas (training set: 141 patients) and Asan Medical Center (validation set: 131 patients). Two neuroradiologists analyzed presurgical CT and MRI to assign gliomas to five imaging-based risk subgroups (1 to 5) according to well-known imaging phenotypes (e.g., T2/FLAIR mismatch) and recategorized them into three imaging-based risk groups, according to the 2021 WHO classification: group 1 (corresponding to risk subgroup 1, indicating oligodendroglioma, isocitrate dehydrogenase [IDH]-mutant, and 1p19q-codeleted), group 2 (risk subgroups 2 and 3, indicating astrocytoma, IDH-mutant), and group 3 (risk subgroups 4 and 5, indicating glioblastoma, IDHwt). The progression-free survival (PFS) and overall survival (OS) were estimated for each imaging risk group, subgroup, and pathological diagnosis. Time-dependent area-under-the receiver operating characteristic analysis (AUC) was used to compare the performance between imaging-based and pathology-based survival model. Results: Both OS and PFS were stratified according to the five imaging-based risk subgroups (P < 0.001) and three imaging-based risk groups (P < 0.001). The three imaging-based groups showed high performance in predicting PFS at one-year (AUC, 0.787) and five-years (AUC, 0.823), which was similar to that of the pathology-based prediction of PFS (AUC of 0.785 and 0.837). Combined with clinical predictors, the performance of the imaging-based survival model for 1- and 3-year PFS (AUC 0.813 and 0.921) was similar to that of the pathology-based survival model (AUC 0.839 and 0.889). Conclusion: Imaging-based survival stratification according to the 2021 WHO classification demonstrated a performance similar to that of pathology-based survival stratification, especially in predicting PFS.

GRIM-19 Ameliorates Multiple Sclerosis in a Mouse Model of Experimental Autoimmune Encephalomyelitis with Reciprocal Regulation of IFNγ/Th1 and IL-17A/Th17 Cells

  • Jeonghyeon Moon;Seung Hoon Lee;Seon-yeong Lee;Jaeyoon Ryu;Jooyeon Jhun;JeongWon Choi;Gyoung Nyun Kim;Sangho Roh;Sung-Hwan Park;Mi-La Cho
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.40.1-40.15
    • /
    • 2020
  • The protein encoded by the Gene Associated with Retinoid-Interferon-Induced Mortality-19 (GRIM-19) is located in the mitochondrial inner membrane and is homologous to the NADH dehydrogenase 1-alpha subcomplex subunit 13 of the electron transport chain. Multiple sclerosis (MS) is a demyelinating disease that damages the brain and spinal cord. Although both the cause and mechanism of MS progression remain unclear, it is accepted that an immune disorder is involved. We explored whether GRIM-19 ameliorated MS by increasing the levels of inflammatory cytokines and immune cells; we used a mouse model of experimental autoimmune encephalomyelitis (EAE) to this end. Six-to-eight-week-old male C57BL/6, IFNγ-knockout (KO), and GRIM-19 transgenic mice were used; EAE was induced in all strains. A GRIM-19 overexpression vector (GRIM19 OVN) was electrophoretically injected intravenously. The levels of Th1 and Th17 cells were measured via flow cytometry, immunofluorescence, and immunohistochemical analysis. IL-17A and IFNγ expression levels were assessed via ELISA and quantitative PCR. IL-17A expression decreased and IFNγ expression increased in EAE mice that received injections of the GRIM-19 OVN. GRIM19 transgenic mice expressed more IFNγ than did wild-type mice; this inhibited EAE development. However, the effect of GRIM-19 overexpression on the EAE of IFNγ-KO mice did not differ from that of the empty vector. GRIM-19 expression was therapeutic for EAE mice, elevating the IFNγ level. GRIM-19 regulated the Th17/Treg cell balance.

Rutin alleviated lipopolysaccharide-induced damage in goat rumen epithelial cells

  • Jinshun Zhan;Zhiyong Gu;Haibo Wang;Yuhang Liu;Yanping Wu;Junhong Huo
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.303-314
    • /
    • 2024
  • Objective: Rutin, also called vitamin P, is a flavonoids from plants. Previous studies have indicated that rutin can alleviate the injury of tissues and cells by inhibiting oxidative stress and ameliorating inflammation. There is no report on the protective effects of rutin on goat rumen epithelial cells (GRECs) at present. Hence, we investigated whether rutin can alleviate lipopolysaccharide (LPS)-induced damage in GRECs. Methods: GRECs were cultured in basal medium or basal medium containing 1 ㎍/mL LPS, or 1 ㎍/mL LPS and 20 ㎍/mL rutin. Six replicates were performed for each group. After 3-h culture, the GRECs were harvested to detect the relevant parameters. Results: Rutin significantly enhanced the cell activity (p<0.05) and transepithelial electrical resistance (TEER) (p<0.01) and significantly reduced the apoptosis rate (p<0.05) of LPS-induced GRECs. Rutin significantly increased superoxide dismutase, glutathione peroxidase, and catalase activity (p<0.01) and significantly decreased lactate dehydrogenase activity and reactive oxygen species and malondialdehyde (MDA) levels in LPS-induced GRECs (p<0.01). The mRNA and protein levels of interleukin 6 (IL-6), IL-1β, and C-X-C motif chemokine ligand 8 (CXCL8) and the mRNA level of tumor necrosis factor-α (TNF-α) and chemokine C-C motif ligand 5 (CCL5) were significantly increased in LPS-induced GRECs (p<0.05 or p<0.01), while rutin supplementation significantly decreased the mRNA and protein levels of IL-6, TNF-α, and CXCL8 in LPS-induced GRECs (p<0.05 or p<0.01). The mRNA level of toll-like receptor 2 (TLR2), and the mRNA and protein levels of TLR4 and nuclear factor κB (NF-κB) was significantly improved in LPS-induced GRECs (p<0.05 or p<0.01), whereas rutin supplementation could significantly reduce the mRNA and protein levels of TLR4 (p<0.05 or p<0.01). In addition, rutin had a tendency of decreasing the protein levels of CXCL6, NF-κB, and inhibitor of nuclear factor kappa-B alpha (0.05

Transcription Factor E2F7 Hampers the Killing Effect of NK Cells against Colorectal Cancer Cells via Activating RAD18 Transcription

  • Bingdong Jiang;Binghua Yan;Hengjin Yang;He Geng;Peng Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.920-929
    • /
    • 2024
  • As a pivotal defensive line against multitudinous malignant tumors, natural killer (NK) cells exist in the tumor microenvironment (TME). RAD18 E3 Ubiquitin Protein Ligase (RAD18) has been reported to foster the malignant progression of multiple cancers, but its effect on NK function has not been mined. Here, the study was designed to mine the mechanism by which RAD18 regulates the killing effect of NK cells on colorectal cancer (CRC) cells. Expression of E2F Transcription Factor 7 (E2F7) and RAD18 in CRC tissues, their correlation, binding sites, and RAD18 enrichment pathway were analyzed by bioinformatics. Expression of E2F7 and RAD18 in cells was assayed by qRT-PCR and western blot. Dual-luciferase assay and chromatin immunoprecipitation (ChIP) assay verified the regulatory relationship between E2F7 and RAD18. CCK-8 assay was utilized to assay cell viability, colony formation assay to detect cell proliferation, lactate dehydrogenase (LDH) test to assay NK cell cytotoxicity, ELISA to assay levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), and immunofluorescence to detect expression of toxic molecules perforin and granzyme B. High expression of RAD18 and E2F7 was found in CRC tissues and cells. Silencing RAD18 could hamper the proliferation of CRC cells, foster viability and cytotoxicity of NK cells, and increase the secretion of GM-CSF, TNF-α, IFN-γ as well as the expression of perforin and granzyme B. Additionally, ChIP and dual-luciferase reporter assay ascertained the binding relationship between RAD18 promoter region and E2F7. E2F7 could activate the transcription of RAD18, and silencing RAD18 reversed the inhibitory effect of E2F7 overexpression on NK cell killing. This work clarified the inhibitory effect of the E2F7/RAD18 axis on NK cell killing in CRC, and proffered a new direction for immunotherapy of CRC in targeted immune microenvironment.

GENE EXPRESSION PATTERNS INDUCED BY $TAXOL^{(R)}$ AND CYCLOSPORIN A IN ORAL SQUAMOUS CELL CARCINOMA CELL LINE USING CDNA MICROARRAY (cDNA Microarray를 이용한 구강편평세포암종 세포주에서 $Taxol^{(R)}$과 Cyclosporin A로 유도된 유전자 발현양상)

  • Kim, Yong-Kwan;Lee, Jae-Hoon;Kim, Chul-Hwan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.3
    • /
    • pp.202-212
    • /
    • 2006
  • It is well-known that paclitaxel($Taxol^{(R)}$), which is extracted from the pacific and English yew, has been used as a chemotherapeutic agent for ovarian carcinoma and advanced breast carcinoma and Cyclosporin A, which is highly lipophilic cyclic peptide and isolated from a fungus, has been also used as an useful immunosuppressive drug after transplantation and is associated with cellular apoptosis. Since 1953, in which James Watson, Rosalind Franklin and Francis Crick discovered the double helical structure of DNA, a few kinds of techniques for identifying gene expression have been developed. In postgenomic period, many of researchers have used the DNA microarray which is high throughput screening technique to screen large numbers of gene expression simultaneously. In this study, we searched and screened the gene expression in the oral squamous cell carcinoma cell lines treated with $Taxol^{(R)}$, cyclosporin or cyclosporin combined with $Taxol^{(R)}$ using cDNA microarray. The results were as following; 1. It was useful that the appropriate concentration of Cyclosporin A and $Taxol^{(R)}$ used in oral squamous cell carcinoma cell line was under 1${\mu}g/ml$ and 3${\mu}g/ml$. 2. In the experimental group in which $Taxol^{(R)}$ and $Taxol^{(R)}$ + Cyclosporin A were used, the cell growth was extremely decreased. 3. In the group in which Cyclosporin A was used, the MTT assay was rarely decreased which means the activity of succinyl dehydrogenase is remained in mitochondria but in the group in which the mixture of Cyclosporin A and $Taxol^{(R)}$ were used, the MTT assay was extremely decreased. 4. In the each group in which Cyclosporin A(3 ${\mu}g/ml$) and $Taxol^{(R)}$(1 ${\mu}g/ml$) were used, the cell arrest was appeared in $G_2/M$ phase and in the group in which $Taxol^{(R)}$(3 ${\mu}g/ml$) was used, the cell arrest was appeared in both S phase and $G_2/M$ phase. 5. In the oral squamous cell carcinoma cell line treated with $Taxol^{(R)}$, several genes including ANGPTL4, RALBP1 and TXNRD1, associated with apoptosis, SUI1, MAC30, RRAGA and CTGF, related with cell growth, HUS1 and DUSP5, related with cell cycle and proliferation, ATF4 and CEBPG, associated with transcription factor, BTG1 and VEGF, associated with angiogenesis, FDPS, FCER1G, GPA33 and EPHA4 associated with signal transduction and receptor activity and AKR1C2 and UGTA10 related with carcinogenesis were detected in increased levels. The genes that showed increaced expression in the oral squamous cell carcinoma cell line treated with Cyclosporin A were CYR61, SERPINB2, SSR3 and UPA3A which are known as genes associated with cell growth, carcinogenesis, receptor activity and transcription factor. The genes expressed in the HN22 cell line treated with cyclosporin combined with $taxol^{(R)}$ were ALCAM and GTSE1 associated with cancer invasiveness and cell cycle regulation.

MiR-126-3p inhibits apoptosis and promotes proliferation by targeting phosphatidylinositol 3-kinase regulatory subunit 2 in porcine ovarian granulosa cells

  • Zhou, Xiaofeng;He, Yingting;Jiang, Yao;He, Bo;Deng, Xi;Zhang, Zhe;Yuan, Xiaolong;Li, Jiaqi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.879-887
    • /
    • 2020
  • Objective: Numerous studies have indicated that the apoptosis and proliferation of granulosa cells (GCs) are closely related to the normal growth and development of follicles and ovaries. Previous evidence has suggested that miR-126-3p might get involved in the apoptosis and proliferation of GCs, and phosphatidylinositol 3-kinase regulatory subunit 2 (PIK3R2) gene has been predicted as one target of miR-126-3p. However, the molecular regulation of miR-126-3p on PIK3R2 and the effects of PIK3R2 on porcine GCs apoptosis and proliferation remain virtually unexplored. Methods: In this study, using porcine GCs as a cellular model, luciferase report assay, mutation and deletion were applied to verify the targeting relationship between miR-126-3p and PIK3R2. Annexin-V/PI staining and 5-ethynyl-2'-deoxyuridine assay were applied to explore the effect of PIK3R2 on GCs apoptosis and proliferation, respectively. Real-time quantitative polymerase chain reaction and Western Blot were applied to explore the regulation of miR-126-3p on PIK3R2 expression. Results: We found that miR-126-3p targeted at PIK3R2 and inhibited its mRNA and protein expression. Knockdown of PIK3R2 significantly inhibited the apoptosis and promoted the proliferation of porcine GCs, and significantly down-regulated the mRNA expression of several key genes of PI3K pathway such as insulin-like growth factor 1 receptor (IGF1R), insulin receptor (INSR), pyruvate dehydrogenase kinase 1 (PDK1), and serine/threonine kinase 1 (AKT1). Conclusion: MiR-126-3p might target and inhibit the mRNA and protein expressions of PIK3R2, thereby inhibiting GC apoptosis and promoting GC proliferation by down-regulating several key genes of the PI3K pathway, IGF1R, INSR, PDK1, and AKT1. These findings would provide great insight into further exploring the molecular regulation of miR-126-3p and PIK3R2 on the functions of GCs during the folliculogenesis in female mammals.

Allium hookeri Extract Improves Type 2 Diabetes Mellitus in C57BL/KSJ Db/db Obese Mouse via Regulation of Hepatic Lipogenesis and Glucose Metabolism (삼채 추출물의 인슐린 저항성 개선 효과 및 기전 탐색)

  • Kim, Ji-Soo;Heo, Jin-Sun;Choi, Jong-Won;Kim, Gun-Do;Sohn, Kie-Ho
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1081-1090
    • /
    • 2015
  • Diabetes has been one of major health risks in industrialized countries. Allium hookeri is a wild herb distributed in India and Myanmar. The root of the plant has been used as food and medicine in Southeast Asia. We investigated Allium hookeri extract improves type 2 diabetes mellitus in C57BL/KSJ db/db obese mouse. C57BL/KSJ db/db obese mouse arise out of Type 2 diabetes and we treated Allium hookeri methanol extract 400 mg/kg (AH 400), 800 mg/kg (AH 800), positive control group (thiazolidinedine;TZDs) were administered orally for 8weeks. AH treated group normalized lipid enzyme system (triglyceride, total cholesterol, HDL-cholesterol and LDL-cholesterol) and serum glucose, HbA1c and plasma insulin level. AH treated group recovered β-cell damage by hyperglycemia and fatty liver disease. AH treated group significantly up regulated expression of Peroxisome proliferator-activated receptor gamma (PPAR-γ), pyruvate dehydrogenase kinase4 (PDK4), Sterol regulatory element-binding protein 1c (SREBP 1) and fork head box O1 (FOX 01) proteins in C57BL/KSJ db/db obese mouse liver. And we found that AH treated group decreased hepatic malondialdehyde formation in C57BL/KSJ db/db obese mouse liver. These results indicate that Allium hookeri methanol extract might be a potential anti-diabetic agent and could be useful in the treatment of type 2 diabetes mellitus.

Anti-inflammatory Activities Verification of Ambrosia trifida L. extract in RAW 264.7 Cells (RAW 264.7 세포에서의 단풍잎돼지풀 추출물의 항염증 활성 검증)

  • Yoo, Dan-Hee;Lee, Jin-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.79-89
    • /
    • 2020
  • This study was performed to evaluate the anti-inflammatory activities of 70% ethanol extract from Ambrosia trifida L. (AT). The electron donating ability and ABTS+ radical scavenging ability of extract from AT was shown to be 84.1% and 92.5% at 1,000 ㎍/ml concentration. The astringent effect of extract from AT was shown to be 94.7% at 1,000 ㎍/ml. The anti- inflammatory activities of extract of AT were investigated using RAW 264.7 cells induced by lipopolysaccharide (LPS). The cell toxicity effect of AT extract on RAW 264.7 performed MTT assay. As a result of the measured cell toxicity effect, 90% or more was shown with cell viability at a 500 ㎍/ml concentration. In nitric oxide synthesis inhibition effect, it was shown that extract from AT concentration dependent inhibited nitric oxide production. The protein expression inhibitory effect of AT extract was measured by western blot at 25, 50, and 100 ㎍/ml concentration and the β-actin used as a positive control. Consequently, the inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 protein expression inhibitory effect was decreased by 8.6%, 25.1% at 100 ㎍/ml concentration. The phosphorylation of extracellular signal-regulated kinase 1/2, p38, c-Jun NH2-terminal kinase and Iκ-Bα protein expression inhibitory effect was a decreased dependent concentration. The mRNA expression inhibitory effect was measured by reverse transcription - polymerase chain reaction at 25, 50, and 100 ㎍/ml concentration and the glyceraldehyde-3-phosphate dehydrogenase used as a positive control. Consequently, the iNOS, COX-2, interleukin (IL)-1β, IL-6 and tumor necrosis factor-α mRNA expression inhibition effect was a decreased dependent concentration in an LPS-activated macrophage. In conclusion, AT extract may have some effects on inflammatory factors as potential anti-inflammatory agents and natural substance for cosmetics.