• 제목/요약/키워드: DECOVALEX project

검색결과 16건 처리시간 0.015초

DECOVALEX-2019 Task G 소개: EDZ Evolution - 굴착손상영역 평가를 위한 수리전도도 및 투수량계수 측정의 신뢰도, 적합성 및 중요성 (An Introduction to the DECOVALEX-2019 Task G: EDZ Evolution - Reliability, Feasibility, and Significance of Measurements of Conductivity and Transmissivity of the Rock Mass)

  • 권새하;민기복
    • 터널과지하공간
    • /
    • 제30권4호
    • /
    • pp.306-319
    • /
    • 2020
  • 사용후핵연료의 심층처분 사업에서는 처분장 주변 모암의 수리역학적 성능을 저하시키는 굴착손상영역의 특성화가 중요하다. 이에 DECOVALEX-2019 프로젝트의 Task G에서는 균열암반 수치해석 모델을 구축한 후 암반 주변의 굴착손상영역의 수리역학적 거동을 모사하고, 구축한 모델로 처분장의 운영 시에 장기적으로 야기될 수 있는 추가적인 수리학적 변화를 관찰하였다. 과업의 첫 번째 단계에서는 2차원 균열암반 모델을 구축하여 수치해석 기법의 특성을 파악하고, 두 번째 단계에서는 3차원 균열암반 모델로 확장 후 스웨덴 애스푀 지하연구시설(Äspö Hard Rock Laboratory) 내 TAS04 간섭시험 결과와 비교하여 수치해석 모델을 검증한 후, 세 번째 단계에서는 열과 빙하 하중에 의한 영향을 반영하여 균열암반의 수리역학적 반응을 순차적으로 확인하였다. 과업의 전 과정에서 유한요소법과 개별요소법으로 균열암반에서의 수리역학적 분석을 수행하였으며, 균열의 기하학적 특성을 반영 및 굴착손상영역을 반영하는 과정에서 각 수치해석 기법에 따라 다양한 접근방법으로 고려하였다. 따라서 본 연구는 향후 결정질 균열암반에 사용후핵연료 처분장을 계획할 시 수치해석 단계에서 채택될 수 있는 다양한 접근 방법과 고려해야 할 사항들을 제시할 수 있을 것으로 전망한다.

유체 주입에 의한 단층 재활성 해석기법 개발: 국제공동연구 DECOVALEX-2019 Task B(Benchmark Model Test) (Coupled Hydro-Mechanical Modelling of Fault Reactivation Induced by Water Injection: DECOVALEX-2019 TASK B (Benchmark Model Test))

  • 박정욱;김태현;박의섭;이창수
    • 터널과지하공간
    • /
    • 제28권6호
    • /
    • pp.670-691
    • /
    • 2018
  • 본 논문에서는 국제공동연구 DECOVALEX-2019 프로젝트의 일환으로 수행된 Task B Benchmark Model Test(BMT)의 연구 결과를 소개하였다. Task B는 'Fault slip modelling'을 연구주제로 하며, 유체의 주입으로 인해 발생하는 단층의 재활성과 수리역학적 연계거동을 예측할 수 있는 해석기법을 개발하는 데에 목적이 있다. BMT 시나리오 해석은 각 참가팀들의 수치모델이 단층의 수리역학적 연동거동을 적절히 모사할 수 있는지 교차검증함으로써 각 해석코드의 완성도를 높이기 위하여 수행되었으며, 주입압 적용 조건, 단층 물성, 수리역학적 연동해석 조건 등에 따라 7개의 해석 모델로 이루어져 있다. 본 연구에서는 TOUGH-FLAC 연동해석 기법을 이용하여, 역학적 변형으로 야기되는 단층의 수리적 물성 변화와 간극의 기하학적 변화를 동시에 반영할 수 있는 수리역학적 커플링 모듈을 개발하였다. BMT 시나리오 해석을 위하여 Task B 1단계(Step 1) 연구에서 개발된 수치모델을 일부 수정하였고, 단층의 변형에 따른 압축률과 투수계수, 단층의 해석 메쉬의 변화가 해석에 반영될 수 있도록 하였다. 단층의 투수량계수와 저류계수가 단층 내 압력 분포, 주입수량, 변위, 응력 등 수리역학적 거동에 미치는 영향을 검토하였으며, 수정된 수치모델을 기수행된 1단계 연구에 적용하여 해석결과를 업데이트하였다. 해석 결과, 본 연구에서 개발한 해석기법이 물 주입으로 인한 단층의 거동을 합리적인 수준에서 재현할 수 있는 것으로 판단할 수 있었다. 본 연구의 해석모델은 Task B에 참여하는 국외 연구팀들과의 의견 교류와 워크숍을 통해 지속적으로 개선하는 한편, 향후 연구의 현장시험에 적용하여 타당성을 검증할 예정이다.

THM analysis for an in situ experiment using FLAC3D-TOUGH2 and an artificial neural network

  • Kwon, Sangki;Lee, Changsoo
    • Geomechanics and Engineering
    • /
    • 제16권4호
    • /
    • pp.363-373
    • /
    • 2018
  • The evaluation of Thermo-Hydro-Mechanical (THM) coupling behavior is important for the development of underground space for various purposes. For a high-level radioactive waste repository excavated in a deep underground rock mass, the accurate prediction of the complex THM behavior is essential for the long-term safety and stability assessment. In order to develop reliable THM analysis techniques effectively, an international cooperation project, Development of Coupled models and their Validation against Experiments (DECOVALEX), was carried out. In DECOVALEX-2015 Task B2, the in situ THM experiment that was conducted at Horonobe Underground Research Laboratory(URL) by Japan Atomic Energy Agency (JAEA), was modeled by the research teams from the participating countries. In this study, a THM coupling technique that combined TOUGH2 and FLAC3D was developed and applied to the THM analysis for the in situ experiment, in which rock, buffer, backfill, sand, and heater were installed. With the assistance of an artificial neural network, the boundary conditions for the experiment could be adequately implemented in the modeling. The thermal, hydraulic, and mechanical results from the modeling were compared with the measurements from the in situ THM experiment. The predicted buffer temperature from the THM modelling was about $10^{\circ}C$ higher than measurement near by the overpack. At the other locations far from the overpack, modelling predicted slightly lower temperature than measurement. Even though the magnitude of pressure from the modeling was different from the measurements, the general trends of the variation with time were found to be similar.

유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1) (Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1))

  • 박정욱;박의섭;김태현;이창수;이재원
    • 터널과지하공간
    • /
    • 제28권5호
    • /
    • pp.400-425
    • /
    • 2018
  • 본 논문에서는 국제공동연구인 DECOVALEX-2019 프로젝트 Task B의 연구결과와 현황을 소개하였다. Task B의 주제는 'Fault slip modelling'으로 유체의 주입으로 인해 발생하는 단층의 재활성(미끄러짐, 전단파괴)과 수리역학적 거동을 예측할 수 있는 해석기법을 개발하는 데에 그 목적이 있다. 1단계 연구는 참가팀들이 연구주제에 대해 숙지하고, 벤치마크 모델을 대상으로 단층의 투수특성과 역학적 거동의 상호작용을 모사할 수 있는 해석코드를 개발할 수 있도록 하는 준비 단계의 연구이다. 본 연구에서는 TOUGH-FLAC 연동해석 기법을 사용하여 물 주입으로 인한 단층의 수리역학적 연계거동을 모사하였다. TOUGH2 해석에서는 단층을 Darcy의 법칙과 삼승법칙을 따르는 연속체 요소로 모델링하였으며, FLAC3D 해석에서는 미끄러짐과 개폐가 허용되는 불연속 인터페이스 요소를 통해 모사하였다. 두 가지 수리간극모델에 대하여 수리역학적 커플링 관계식을 수치화하였으며, 연속체 요소(수리모델)와 인터페이스 요소(역학모델)의 거동을 연계할 수 있는 해석기법을 제시하였다. 또한, 단층의 역학적 변형(간극의 변화)으로 인한 수리물성 변화와 기하학적 변화(해석 메쉬의 변형)를 수리해석에 반영할 수 있는 해석기법을 개발하였다. 다양한 압력의 물을 단계적으로 주입하고 이로 인해 유도되는 단층의 탄성거동 및 전단파괴(미끄러짐)에 대해 살펴보았으며, 수리간극의 변화 양상과 원인, 압력 분포와 주입율의 관계 등을 면밀히 검토하였다. 해석 결과, 본 연구에서 개발한 해석기법이 물 주입으로 인한 단층의 미끄러짐 거동을 합리적인 수준에서 재현할 수 있는 것으로 판단할 수 있었다. 본 연구의 해석모델은 Task B에 참여하는 국외 연구팀들과의 의견 교류와 워크숍을 통해 지속적으로 개선하는 한편, 향후 연구의 현장시험에 적용하여 타당성을 검증할 예정이다.

수리역학적연계 3차원 입자유동코드를 사용한 유체주입에 의한 단층변형 모델링: DECOVALEX-2019 Task B (Modelling of Fault Deformation Induced by Fluid Injection using Hydro-Mechanical Coupled 3D Particle Flow Code: DECOVALEX-2019 Task B)

  • 윤정석
    • 터널과지하공간
    • /
    • 제30권4호
    • /
    • pp.320-334
    • /
    • 2020
  • 본 수치해석연구에서는 국제공동연구프로젝트 DECOVALEX2019의 Task B의 일환으로 PFC3D를 기반으로한 수리역학연계모델을 개발하여 스위스 Mont Terri 지하연구시설에서 수행된 단층의 유체주입으로 인한 슬립시험을 모사하였다. 이를통해, 개발한 PFC3D 수리역학연계모델이 가진 한계점과 향후 보완할 점을 검토하고자 하였다. PFC3D를 기반으로한 3차원 입자결합모델 내 공극-유동통로모델을 생성하였으며 이를 사용하여 Mont Terri Step 2 단층내 유체주입실험을 모사하였다. 모델링결과 단층대를 따라 주입유체의 유동에 의한 단층대의 변형을 확인하였지만, 관측정에서의 시간에 따른 수압변화는 현장측정치와 부분적으로 일치하는 경향을 확인하였다. 현장측정 관측수압은 초기 유체주입 압력증가에 거의 변화를 보이지 않고 주입수압이 최대치에 도달할때쯤 급격한 증가를 보이는반면, 모델링에서는 주입압력이 증가함에 따라 관측수압도 부드럽게 증가하는 경향을 보였다. 이러한 부분적으로 일치하는 결과의 원인으로는 Mont Terri 현장의 단층을 모사하는 방법에 기인하는 것으로 판단하다. PFC3D에서는 단층을 손상대와 코어균열의 조합으로 모사하였고 단층대의 두께가 약 2 m로 주입유체가 단층대를 통해 유동하도록 모사하였기에 현장에서의 주입유체의 단층내 유동보다 그 유동범위가 크게 모사되었다고 판단한다. 또한, 현장단층에서와 같이 단층내부에 존재하는 충진물질로 인해 단층내 수리유동이 제한되어 국부적으로 과잉공급수압이 형성될 수 있는 기재를 모사하지 못한 점 또한 모델링 결과와 현장측정결과가 부분적으로 일치하는 원인일 수 있다. 단층변형의 경우는 모델링결과와 현장측정결과 유사한 수준으로 일치하는 결과를 확인하였다. 수치모델을 변형하여 단층대의 두께를 감소시키고 단층내 충진 물질의 비균질적인분포를 모사할 수 있는 방법론에 대한 후속 연구를 통해 PFC3D 수리역학연계모델의 유체주입으로 인한 단층활성화 연구로의 적용성을 향상시키는 것을 제안하고 한다.

스위스 Mont Terri rock laboratory에서 수행된 암반 히터시험(HE-D)에 대한 열-수리-역학적 복합거동 수치해석 (Numerical modelling of coupled thermo-hydro-mechanical behavior of Heater Experiment-D (HE-D) at Mont Terri rock laboratory in Switzerland)

  • 이창수;최희주;김건영
    • 터널과지하공간
    • /
    • 제30권3호
    • /
    • pp.242-255
    • /
    • 2020
  • 본 연구에서는 FLAC3D가 Opalinus Clay 암반의 열-수리-역학적 복합거동을 재현하고 이를 예측할 수 있는지 그 적용성을 검토하고자 국제공동연구 DECOVALEX-2015에서 참여하였으며, 그 일환으로 스위스 Mont Terri Rock Laboratory에서 수행된 Heater Experiment-D (HE-D)에 대한 모델링을 수행하였다. FLAC3D를 이용한 수치해석의 타당성을 평가하기 위해 현장시험에서 계측된 16 지점의 온도, 6 지점의 공극수압, 그리고 22 지점의 변형률 데이터와 비교하였다. 대상 암반의 열-수리-역학적인 이방성을 고려함으로써 Opalinus Clay 암반의 온도 변화 그리고 온도변화에 따른 공극수압의 변화와 같은 열-수리적 거동은 전반적으로 유사하게 나타났으나, 역학적 거동의 경우 변형률 데이터를 비교했을 때 온도와 공극수압과는 달리 계산된 변형률 일부만이 유사한 거동을 보였다.