• Title/Summary/Keyword: DEA(Drag Embedment Anchor)

Search Result 2, Processing Time 0.02 seconds

Experimental Study of Embedding Motion and Holding Power of Drag Embedment Type Anchor (DEA) on Sand Seafloor (해성 모래지반에서 Drag Embedment Type Anchor Model의 파지 운동 및 파지력에 대한 실험적 연구)

  • Lee, Jae-Hoon;Seo, Byoung-Cheon;Shin, Hyunk-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.183-187
    • /
    • 2011
  • As larger the commercial vessel is, and rougher the marine environment becomes nowadays, drag embedment type anchor (DEA) of more stable performance and higher holding power is requested to be applied on the vessel. But, the performance of DEA has not become well known to academy and industries so far, that the basic study of DEA performance and holding force for the development of new DEA of higher performance is insufficient that required. In this paper, three types of same holding category DEA model (HALL, AC-14, POOL-N, scale 1/10), which are generally applied on the commercial vessel nowadays, were tested by being horizontally dragged on the test tank, on which sand was being floored with sufficient depth, and measured the holding force of each anchor simultaneously using load cell and D/A converter. With the test results, the embedding motion was analyzed to have three different stages and the holding force of each anchor was analyzed with respect to the anchor geometry, such as shape and weight of each type of anchors, and final embedding depth.

Experimental study of embedding motion and holding power of drag embedment type anchor on hard and soft seafloor

  • Shin, Hyun-Kyoung;Seo, Byoung-Cheon;Lee, Jea-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.193-200
    • /
    • 2011
  • As larger ships and floating offshore structures are, and rougher the marine environment becomes nowadays, a drag embedment type anchor of more stable performance and higher holding power is requested. This paper describes an experimental study of the drag embedding motion and the resultant holding force of three types of drag embedment type anchor model (HALL, AC-14, SEC POOL-N, scale 1/10).