• Title/Summary/Keyword: DE algorithm

Search Result 491, Processing Time 0.037 seconds

Pan Evaporation Modeling using Cascade-Correlation Algorithm (Cascade-Correlation Algorithm을 이용한 증발접시 증발량의 모형화)

  • Kim, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.766-770
    • /
    • 2005
  • Cascade-Correlation Neural Networks Model(CCNNM) is used to estimate daily evaporation using limited climatical variables such as atmospheric temperature, dewpoint temperature, relative humidity, wind speed, sunshine duration and radiation. DeBruln equation is applied to estimate daily free-surface evaporation. It is converted into pan evaporation using pan coefficient. The results of CCNNM shows better than those of Debruin equation. This research represents that the strong nonlinear relationship such as evaporation modeling can be generalized by the CCNNM ; a special type of Backpropagation algorithm Neural Networks Model.

  • PDF

DIntrusion Detection in WSN with an Improved NSA Based on the DE-CMOP

  • Guo, Weipeng;Chen, Yonghong;Cai, Yiqiao;Wang, Tian;Tian, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5574-5591
    • /
    • 2017
  • Inspired by the idea of Artificial Immune System, many researches of wireless sensor network (WSN) intrusion detection is based on the artificial intelligent system (AIS). However, a large number of generated detectors, black hole, overlap problem of NSA have impeded further used in WSN. In order to improve the anomaly detection performance for WSN, detector generation mechanism need to be improved. Therefore, in this paper, a Differential Evolution Constraint Multi-objective Optimization Problem based Negative Selection Algorithm (DE-CMOP based NSA) is proposed to optimize the distribution and effectiveness of the detector. By combining the constraint handling and multi-objective optimization technique, the algorithm is able to generate the detector set with maximized coverage of non-self space and minimized overlap among detectors. By employing differential evolution, the algorithm can reduce the black hole effectively. The experiment results show that our proposed scheme provides improved NSA algorithm in-terms, the detectors generated by the DE-CMOP based NSA more uniform with less overlap and minimum black hole, thus effectively improves the intrusion detection performance. At the same time, the new algorithm reduces the number of detectors which reduces the complexity of detection phase. Thus, this makes it suitable for intrusion detection in WSN.

A Hybrid Estimation of Distribution Algorithm with Differential Evolution based on Self-adaptive Strategy

  • Fan, Debin;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Estimation of distribution algorithm (EDA) is a popular stochastic metaheuristic algorithm. EDA has been widely utilized in various optimization problems. However, it has been shown that the diversity of the population gradually decreases during the iterations, which makes EDA easily lead to premature convergence. This article introduces a hybrid estimation of distribution algorithm (EDA) with differential evolution (DE) based on self-adaptive strategy, namely HEDADE-SA. Firstly, an alternative probability model is used in sampling to improve population diversity. Secondly, the proposed algorithm is combined with DE, and a self-adaptive strategy is adopted to improve the convergence speed of the algorithm. Finally, twenty-five benchmark problems are conducted to verify the performance of HEDADE-SA. Experimental results indicate that HEDADE-SA is a feasible and effective algorithm.

Combinatorial particle swarm optimization for solving blocking flowshop scheduling problem

  • Eddaly, Mansour;Jarboui, Bassem;Siarry, Patrick
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.295-311
    • /
    • 2016
  • This paper addresses to the flowshop scheduling problem with blocking constraints. The objective is to minimize the makespan criterion. We propose a hybrid combinatorial particle swarm optimization algorithm (HCPSO) as a resolution technique for solving this problem. At the initialization, different priority rules are exploited. Experimental study and statistical analysis were performed to select the most adapted one for this problem. Then, the swarm behavior is tested for solving a combinatorial optimization problem such as a sequencing problem under constraints. Finally, an iterated local search algorithm based on probabilistic perturbation is sequentially introduced to the particle swarm optimization algorithm for improving the quality of solution. The computational results show that our approach is able to improve several best known solutions of the literature. In fact, 76 solutions among 120 were improved. Moreover, HCPSO outperforms the compared methods in terms of quality of solutions in short time requirements. Also, the performance of the proposed approach is evaluated according to a real-world industrial problem.

Efficient Computation of Isosurface Curvatures on GPUs Based on the de Boor Algorithm (드 부어 알고리즘을 이용한 GPU에서의 효율적인 등가면 곡률 계산)

  • Kim, Minho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.47-54
    • /
    • 2017
  • In this paper, we propose an improved curvature-based GPU (Graphics Processing Unit) isosurface ray-casting technique. Our method adopts the fast evaluation method proposed by Sigg et al. [1] to find the isosurface, but replaces the computation of the gradient and Hessian with the de Boor algorithm. In this way, we can reduce the number of additional texture fetches from 84 to 27 thus improving the performance by up to ${\approx}30%$, depending on the platforms.

High Performance De-interlacing Algorithm Based on Region Adaptive Interpolation Filter

  • Yang, Yang;Chen, Xiangdong;Wang, Jin;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.200-203
    • /
    • 2011
  • In order to convert interlaced video into progressive scanning format, this paper proposed a high performance de-interlacing algorithm based on region adaptive interpolation filter design. Specifically, usage of the 6-tap filter is only for the most complex region, but for the smooth and regular edge region, much more correlated filter such as 2-tap or 4-tap filter should be used instead. According to the experimental results, the proposed algorithm has achieved noticeably good performance.

  • PDF

Comparison of Three Evolutionary Algorithms: GA, PSO, and DE

  • Kachitvichyanukul, Voratas
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.3
    • /
    • pp.215-223
    • /
    • 2012
  • This paper focuses on three very similar evolutionary algorithms: genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE). While GA is more suitable for discrete optimization, PSO and DE are more natural for continuous optimization. The paper first gives a brief introduction to the three EA techniques to highlight the common computational procedures. The general observations on the similarities and differences among the three algorithms based on computational steps are discussed, contrasting the basic performances of algorithms. Summary of relevant literatures is given on job shop, flexible job shop, vehicle routing, location-allocation, and multimode resource constrained project scheduling problems.

Cost optimization of reinforced high strength concrete T-sections in flexure

  • Tiliouine, B.;Fedghouche, F.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.65-80
    • /
    • 2014
  • This paper reports on the development of a minimum cost design model and its application for obtaining economic designs for reinforced High Strength Concrete (HSC) T-sections in bending under ultimate limit state conditions. Cost objective functions, behavior constraint including material nonlinearities of steel and HSC, conditions on strain compatibility in steel and concrete and geometric design variable constraints are derived and implemented within the Conjugate Gradient optimization algorithm. Particular attention is paid to problem formulation, solution behavior and economic considerations. A typical example problem is considered to illustrate the applicability of the minimum cost design model and solution methodology. Results are confronted to design solutions derived from conventional design office methods to evaluate the performance of the cost model and its sensitivity to a wide range of unit cost ratios of construction materials and various classes of HSC described in Eurocode2. It is shown, among others that optimal solutions achieved using the present approach can lead to substantial savings in the amount of construction materials to be used. In addition, the proposed approach is practically simple, reliable and computationally effective compared to standard design procedures used in current engineering practice.

Composite Differential Evolution Aided Channel Allocation in OFDMA Systems with Proportional Rate Constraints

  • Sharma, Nitin;Anpalagan, Alagan
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.523-533
    • /
    • 2014
  • Orthogonal frequency division multiple access (OFDMA) is a promising technique, which can provide high downlink capacity for the future wireless systems. The total capacity of OFDMA can be maximized by adaptively assigning subchannels to the user with the best gain for that subchannel, with power subsequently distributed by water-filling. In this paper, we propose the use of composite differential evolution (CoDE) algorithm to allocate the subchannels. The CoDE algorithm is population-based where a set of potential solutions evolves to approach a near-optimal solution for the problem under study. CoDE uses three trial vector generation strategies and three control parameter settings. It randomly combines them to generate trial vectors. In CoDE, three trial vectors are generated for each target vector unlike other differential evolution (DE) techniques where only a single trial vector is generated. Then the best one enters the next generation if it is better than its target vector. It is shown that the proposed method obtains higher sum capacities as compared to that obtained by previous works, with comparable computational complexity.

Optimisation of an inductive power transfer structure

  • Besuchet, Romain;Auvigne, Christophe;Shi, Dan;Winter, Christophe;Civet, Yoan;Perriard, Yves
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.349-355
    • /
    • 2013
  • This paper presents the multi-objective optimisation of an Inductive Coupled Power Transfer (ICPT) device. A setup as complicated as the one at hand in this paper is extremely hard to model analytically. To acquire some knowledge about the influence of the geometric factors, a sensitivity analysis is first performed using design of experiment (DoE) and finite-element modelling (FEM). It allows validating that the choice of the free factors is relevant. This being done, the optimisation itself is performed using a genetic algorithm (GA), with two objectives and a strict functioning constraint.