• Title/Summary/Keyword: DCT coefficients

Search Result 295, Processing Time 0.036 seconds

Steganalysis of Content-Adaptive Steganography using Markov Features for DCT Coefficients (DCT 계수의 마코프 특징을 이용한 내용 적응적 스테가노그래피의 스테그분석)

  • Park, Tae Hee;Han, Jong Goo;Eom, Il Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.97-105
    • /
    • 2015
  • Content-adaptive steganography methods embed secret messages in hard-to-model regions of covers such as complicated texture or noisy area. Content-adaptive steganalysis methods often need high dimensional features to capture more subtle relationships of local dependencies among adjacent pixels. However, these methods require many computational complexity and depend on the location of hidden message and the exploited distortion metrics. In this paper, we propose an improved steganalysis method for content-adaptive steganography to enhance detection rate with small number features. We first show that the features form the difference between DCT coefficients are useful for analyzing the content-adaptive steganography methods, and present feature extraction mehtod using first-order Markov probability for the the difference between DCT coefficients. The extracted features are used as input of ensemble classifier. Experimental results show that the proposed method outperforms previous schemes in terms of detection rates and accuracy in spite of a small number features in various content-adaptive stego images.

Adaptive Video Watermarking based on 3D-DCT Using Image Characteristics (영상 특성을 이용한 3D-DCT 기반의 적응적인 비디오 워터마킹)

  • Lee, Sung-Hyun;Park, Hyun;Moon, Young-Shik
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1173-1176
    • /
    • 2005
  • Depending on the characteristics of each 3D-DCT block, images can be classified into three types: images with motion and textures, images with high textures and little motion, images with little textures and little motion. In this paper, we propose an adaptive watermarking method using these characteristics of each 3D-DCT block. and the human visual system. The proposed method classifies patterns of 3D-DCT blocks based on the motion and texture information, and classifies the image type according to the ratio of these patterns. The watermark is inserted proportional to the 3D-DCT coefficients by using pattern adaptive JND, which. makes the proposed watermarking robust by inserting watermarks in as many blocks as possible. Experimental results show that the proposed method achieves better performance in terms of invisibility and robustness than the previous method.

  • PDF

Progressive Image Transmission Using Hierarchical Pyramid Structure and Classified Vector Quantizer in DCT Domain (계층적 피라미드 구조와 DCT 영역에서의 분류 벡터 양지기를 이용한 점진적 영상전송)

  • 박섭형;이상욱
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.8
    • /
    • pp.1227-1237
    • /
    • 1989
  • In this paper, we propose a lossless progressive image transmission scheme using hierarchical pyramid structure and classified vector quantizer in DCT domain. By adopting DCT to the hierarchical pyramid signals, we can reduce the spatial redundance. Moreover, the DCT coefficients can be encoded efficiently by using classified vector quantizer in DCT domain. The classifier is simply based on the variance of a subblock. Also, the mirror set of training set of images can improve the robustness of codebooks. Progressive image transmission can be achieved through following processes: from top to bottom level of planes in a pyramid, and from high to low AC variance class in a plane. Some simulation results with real images show that the proposed coding scheme yields a good performance at below 0.3 bpp and an excellent result at 0.409 bpp. The proposed coding scheme is well suited for lossless progressive image transmission as well as image data compression.

  • PDF

A Portmanteau Test Based on the Discrete Cosine Transform (이산코사인변환을 기반으로 한 포트맨토 검정)

  • Oh, Sung-Un;Cho, Hye-Min;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.323-332
    • /
    • 2007
  • We present a new type of portmanteau test in the frequency domain which is derived from the discrete cosine transform(DCT). For the stationary time series, DCT coefficients are asymptotically independent and their variances are expressed by linear combinations of autocovariances. The covariance matrix of DCT coefficients for white noises is diagonal matrix whose diagonal elements is the variance of time series. A simple way to test the independence of time series is that we divide DCT coefficients into two or three parts and then compare sample variances. We also do this by testing the slope in the linear regression model of which the response variables are absolute values or squares of coefficients. Simulation results show that the proposed tests has much higher powers than Ljung-Box test in most cases of our experiments.

An image sequence coding using motion-compensated transform technique based on the sub-band decomposition (움직임 보상 기법과 분할 대역 기법을 사용한 동영상 부호화 기법)

  • Paek, Hoon;Kim, Rin-Chul;Lee, Sang-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • In this paper, by combining the motion compensated transform coding with the sub-band decomposition technique, we present a motion compensated sub-band coding technique(MCSBC) for image sequence coding. Several problems related to the MCSBC, such as a scheme for motion compensation in each sub-band and the efficient VWL coding of the DCT coefficients in each sub-band are discussed. For an efficient coding, the motion estimation and compensation is performed only on the LL sub-band, but the discrete cosine transform(DCT) is employed to encode all sub-bands in our approach. Then, the transform coefficients in each sub-band are scanned in a different manner depending on the energy distributions in the DCT domain, and coded by using separate 2-D Huffman code tables, which are optimized to the probability distributions in the DCT domain, and coded by using separate 2-D Huffman code tables, which are optimized to the probability distribution of each sub-band. The performance of the proposed MCSBC technique is intensively examined by computer simulations on the HDTV image sequences. The simulation results reveal that the proposed MCSBC technique outperforms other coding techniques, especially the well-known motion compensated transform coding technique by about 1.5dB, in terms of the average peak signal to noise ratio.

  • PDF

Power Signal Monitering System with Compression Storage and Reconstruction (압축 저장 및 복원기능을 가지는 전력신호 모니터링 시스템)

  • Bae, Hyeon-Deok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.148-154
    • /
    • 2016
  • In recent year, the interests of PQ is increase due to the increasing of non-linear load and distributed power sources in power system. For the parameters detection and feature extraction of PQ, and the PQ improvement method, continuous power signal monitering is needed. In this paper, the power signal compression and reconstruction method is suggested for power signal monitering. The power signal is compressed using DCT that has good compression performance, and the compressed signal is reconstructed through IDCT. And for the higher compression rate, DCT coefficients are arranged by magnitude in compression process, and in recouction process DCT coefficients are rearranged to original frequency position. The synthesized signal according to the IEC standard is used used in compression and reconstruction simulations. The performances of the proposed method are verified by comparing the error between synthesized signal and reconstructed signal.

A Compressive Sensing Based Imaging Algorithm Using Incoherent Measurements and DCT (저상관도 측정치와 DCT를 이용한 압축센싱 기반 영상 획득 알고리듬)

  • Kim, Seehyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1961-1966
    • /
    • 2016
  • Compressive sensing has proved that a signal can be restored from less samples than the Nyquist rate. Reducing the required data rate is essential for a variety of fields including compression, transmission, and storage. It has been made lots of attempt to apply the compressive sensing theory into data intensive fields, such as image processing which needs to cover 4K and 8K pictures. In this paper, an image acquisition algorithm based on compressive sensing is proposed. It combines DCT, which can compact the energy of a image into a few coefficients, and the Noiselet transform, which is incoherent with DCT. The DCT coefficients represent the coarse structure of the images while the Noiselet information holds the fine details. Performance experiments with several images show that the proposed image acquisition algorithm not only outperforms the previous results, but also improves the reconstruction quality faster as the number of measurements increases.

Vector Quantization Codebook Design Using Unbalanced Binary Tree and DCT Coefficients (불균형 이진트리와 DCT 계수를 이용한 벡터양자화 코드북)

  • 이경환;최정현;이법기;정원식;김경규;김덕규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12B
    • /
    • pp.2342-2348
    • /
    • 1999
  • DCT-based codebook design using binary tree was proposed to reduce computation time and to solve the initial codebook problem. In this method, DCT coefficient of training vectors that has maximum variance is to be a split key and the mean of coefficients at the location is used as split threshold, then balanced binary tree for final codebook is formed. However edge degradation appears in the reconstructed image, since the blocks of shade region are frequently selected for codevector. In this paper, we propose DCT-based vector quantization codebook design using unbalanced binary tree. Above all, the node that has the largest split key is splited. So the number of edge codevector can be increased. From the simulation results, this method reconstructs the edge region sincerely and shows higher PSNR than previous methods.

  • PDF

Detecting Dissolve Cut for Multidimensional Analysis in an MPEG compressed domain : Using DCT-R of I, P Frames (MPEG의 다차원 분석을 통한 디졸브 구간 검출 : I, P프레임의 DCT-R값을 이용)

  • Heo, Jung;Park, Sang-Sung;Jang, Dong-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.34-40
    • /
    • 2003
  • The paper presents a method to detect dissolve shots of video scene change detections in an MPEG compressed domain. The proposed algorithm uses color-R DCT coefficients of Ⅰ, P-frames for a fast operation and accurate detection and a minimum decoding process in MPEG sequences. The paper presents a method to detect dissolve shot for three-dimensional visualization and analysis of Image in order to recognize easily in computer as a human detects accurately shots of scene change. First, Color-R DCT coefficients for 8*8 units are obtained and the features are summed in a row. Second, Four-step analysis are Performed for differences of the sum in the frame sequences. The experimental results showed that the algorithm has better detection performance, such as precision and recall rate, than the existing method using an average for all DC image by performing four step analysis. The algorithm has the advantage of speed, simplicity and accuracy. In addition. it requires less amount of storage.

  • PDF

A DCT Learning Combined RRU-Net for the Image Splicing Forgery Detection (DCT 학습을 융합한 RRU-Net 기반 이미지 스플라이싱 위조 영역 탐지 모델)

  • Young-min Seo;Jung-woo Han;Hee-jung Kwon;Su-bin Lee;Joongjin Kook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.11-17
    • /
    • 2023
  • This paper proposes a lightweight deep learning network for detecting an image splicing forgery. The research on image forgery detection using CNN, a deep learning network, and research on detecting and localizing forgery in pixel units are in progress. Among them, CAT-Net, which learns the discrete cosine transform coefficients of images together with images, was released in 2022. The DCT coefficients presented by CAT-Net are combined with the JPEG artifact learning module and the backbone model as pre-learning, and the weights are fixed. The dataset used for pre-training is not included in the public dataset, and the backbone model has a relatively large number of network parameters, which causes overfitting in a small dataset, hindering generalization performance. In this paper, this learning module is designed to learn the characterization depending on the DCT domain in real-time during network training without pre-training. The DCT RRU-Net proposed in this paper is a network that combines RRU-Net which detects forgery by learning only images and JPEG artifact learning module. It is confirmed that the network parameters are less than those of CAT-Net, the detection performance of forgery is better than that of RRU-Net, and the generalization performance for various datasets improves through the network architecture and training method of DCT RRU-Net.

  • PDF