• 제목/요약/키워드: DCM-A OLED

검색결과 13건 처리시간 0.025초

Rubrene과 DCM2가 첨가된 적색 유기전계발광소자의 발광특성 (Luminescent characteristics of OLED doped with DCM2 and rubrene)

  • 박용규;성현호;김인회;조황신;양해석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.939-942
    • /
    • 2001
  • We fabricated Red Organic light-emitting devices(OLED). The Basic Device Structure is ITO/hole transfer layer, TPD(50nm)/red emitting layer, Alq3 doped with DCM2 or DCM2:rubrene(xnm)/electorn transfer layer, Alq3(50-xnm)/LiF(0.8nm)/Al(8nm) . The thickness of emitting layer(xnm) changed 5, 10, 20nm. we demonstrate red emitting OLED with dependent on the thickness and concentrators of Alq3 layer doped with DCM2 or co-doped with DCM2:ruberene. The Emission color and Brightness are changed with doping or co-doping condition, dopant concentarton. In the case of rubrene:DCM2 co-doped layer structure, the red color Purity and device efficiency is improved. The CIE index of rubrene co-doped OLED is x=0.67, y=0.31. By co-doping the Alq3 layer with DCM2, rubrene, EL efficiency improved from 0.38cd/A to 0.44cd/A in comparison whit DCM2 doped Alq3 layer.

  • PDF

DCM-A 유도체를 이용한 유기 광전 변환 소자의 특성 (Characteristics of Organic Light Emitting diodes with DCM derivatives)

  • 문수산;이성안;한은미
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.168-168
    • /
    • 2010
  • DCM derivatives were newly synthesized. The OLEDs with a DCM-A as an emitting layer was fabricated and analyzed their opto-electrical properties. The structures of OLEDs were I) ITO/DCM-A/Al, II) ITO/-NPD/DCM-A/LiF/Al, and III) ITO/-NPD/DCM-A/Alq3/LiF/Al. The EL peak of the DCM-A shows the red emission in the range of 700 nm. The structure I) shows that 1050 nW/cm2 at 510 mA/cm2. The structure II) shows that takes the most excellent luminance about 39,000 nW/cm2 at 290 mA/cm2. The EL structure ill shows luminance about 13,000 nW/cm2 at 6 mA/cm2.

  • PDF

ITO/$\alpha$-NPD:DCM/$\alpha$-NPD/BCP/$Alq_3$/Al 구조에서의 DCM의 도핑농도에 따른 유기 백색발광소자 구현 (The Fabrication of the White Organic Light Emitting Devices by varying the Doping Concentrations of DCM in ITO/$\alpha$-NPD:DCM/$\alpha$-NPD/BCP/$Alq_3$/Al)

  • 최성진;조재영;윤석범;오환술
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.999-1002
    • /
    • 2003
  • In this study, the white organic light emitting device was fabricated using ITO/a-NPD:DCM/a-NPD/BCP/Alq3/Al structure. Blue emission by a-NPD and orange emission by energy transfer between a-NPD and DCM embodied the white emission. The optimal structure of the white OLED is ITO/a-NPD:DCM(50$\square$)/a-NPD(150$\AA$)/BCP(100$\square$)/Alq$_3$(200$\square$)/Al. We varied the doping concentration of DCM properly and obtained high purity white emitting light. The CIE coordinate and maximum luminance of the devices was obtained (0.310, 0.333) and 400cd/$m^2$ at 11Volt.

  • PDF

rubrene을 도핑한 Red OLED 특성 연구 (Study on characteristics of Red OLED doped with rubrene)

  • 이정호;정지훈;김영관
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2005년도 제16회 정기총회 및 동계학술발표회
    • /
    • pp.166-167
    • /
    • 2005
  • The doping technique has been well known as method to get various emission color by choosing appropriate fluorescent dyes as a dopant. Usually, red emission of OLED device based on Alg$_{3}$ doped with DCM and rubrene is fabricated. Result that fabricate OLED device was manufactured by various doping density, we looked for the doping ratio of highest luminescent efficiency.

  • PDF

각종 p-치환아미노스티릴기를 갖는 적색발광재료용 DCM류의 합성 (Synthesis of DCM Classes Having p-Substituted Aminostyryl Groups for Red-Emitting Materials)

  • 정평진;성진희
    • 공업화학
    • /
    • 제17권6호
    • /
    • pp.609-613
    • /
    • 2006
  • 본 연구는 유기발광다이오드(OLED)용 적색형광 물질인 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)유도체들의 합성에 관한 것으로서, 유도체들은 Knoevenagel 축합반응에 의하여 합성되었다. 이들은 전자공여성의 아미노스티릴기와 전자흡인성의 시아노(니트릴)기의 공액구조를 가지고 있다. 합성한 물질은 각각 FT-IR, $^1H-NMR$ 등을 통하여 그 구조적 특성을 확인하였고, 융점, 수득율 등을 통하여 열적 안정성, 반응성 등을 확인하였으며, UV-visible과 PL분석으로부터 이 형광재료들의 광학적 특성을 확인하였다.

DCM 계열을 이용한 OLED의 전기적인 발광 특성에 관한 연구 (Light Emitting Characteristics of Multi-layer OLEO Fabricated with DCM)

  • 전민호;윤석원;임성택;신동명
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 디스플레이 광소자 분야
    • /
    • pp.57-60
    • /
    • 2002
  • In generally, the guest-emitter doped system has been reported to give a bright electroluminescence(EL). The purpose of using doped system is to improve for increasing lifetime and efficiency, and tuning multicolor light. This indicates an enhanced electron-hole recombination rate in emitting layer. The purpose of this study is to obtain the high performance EL devices for flat panel display with red emission. We fabricated EL devices using the guest-host system. where DCM derivatives were taken as a dopant. The devices are fabricated in multilayer system with various concentration of the dopant (red light emitting dye). We measured the I-V characteristics and EL spectra from these devices. and we compared with photoluminescence(PL) quantum yield among the DCM derivatives. The emission mechanism of devices is participated in energy transfer. The energy transfer from these hosts to DCM generates luminescence spectra that vary from yellow red to red, depending on DCM derivatives. Absorption and emission spectra of organic materials composing the devices depend on the emission materials doped with the DCM derivatives. We demonstrated that the high EL efficiency can be achieved by doping host material with DCM derivatives and molecular steric structures

  • PDF

Active Matrix OLED Displays with High Stability and Luminous Efficiency by New Doping Method

  • Shibata, Kenichi;Hamada, Yuji;Kanno, Hiroshi;Takahashi, Hisakazu;Mameno, Kazunobu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.4-6
    • /
    • 2003
  • We have developed the active matrix OLED displays with a high efficiency red emission material which uses an emitting assist (EA) dopant system. The EA dopant (rubrene) did not itself emit but assisted the energy transfer from the host ($Alq_s$) to the red emitting dopant(DCM2). A stable red emission (chromaticity coordinates: x=0.64, y=0.36) was obtained in this cell within the luminance range of 100 - 4000 $cd/m^2$ By using EA dopant system, we can realize the reduction of the power consumption of the OLED display..

  • PDF

광전도성 고분자와 안트라센 유도체를 이용한 백색 전계발광소자의 발광 특성 (Electroluminescent Properties of White Light-Emitting Device Using Photoconductive Polymer and Anthracene Derivatives)

  • 이정환;최희락;이봉
    • 한국재료학회지
    • /
    • 제15권8호
    • /
    • pp.543-547
    • /
    • 2005
  • Organic electroluminescence devices were made from 1,4-bis-(9-anthrylvinyl)benzene (AVB) and 1,4-bis-(9-aminoanthryl)benzene (AAB) anthracene derivatives. Device structure was ITO/AVB/PANI(EB)/Al (multi-layer device) and ITO/AAB:DCM/Al(single-layer device). In these devices, AVB, polyaniline(emeraldine base) (PANI(EB)) and AAB were used as the emitting material. 4-(dicyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H -pyran(DCM) was used as red fluorescent dopant. We studied change of fluorescence wavelength with concentration of DCM doped in AAB. The ionization potential (IP) and optical band gap (Eg) were measured by cyclic voltammetry and UV-visible spectrum. We compared with difference of emitting wavelength between photoluminescence and electroluminescence spectrum. In case of the multi-layer device, PANI and AVB EL spectra have similar wave pattern to each PL spectrum and when PAM and AVB were used at the same time, and multi-layer device showed that a balanced recombination and radiation kom PANI and AVB. In case of the single-layer device, with the increase of DCM concentration, the blue emission decreases and red emission increases. This indicates that DCM was excited by the energy transfer from AAB to DCM or the direct recombination at the dopant sites due to carrier trapping, or both. The device with $1.0wt\%$ DCM concentration gave white light.

Efficient orange-red OLED using a new DCM derivative as a doping molecule

  • Hwang, Do-Hoon;Lee, Jong-Don;Lee, Moon-Jae;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.579-581
    • /
    • 2004
  • A new DCM derivative containing the phenoxazine moiety (DCPXZ) has been synthesized for use as a red fluorescent dye molecule in organic light-emitting diodes (OLEDs). The photoluminescence and electroluminescence properties of DCPXZ were examined. The maximum photoluminescence of DCPXZ in chloroform solution ($10^{-5}$ mol) was observed at 616 nm. EL devices were fabricated with the structure ITO/PEDOT-PSS/Cu-PC(15nm)/${\alpha}$-NPD(45nm)/$Alq_3$:DCPXZ(30nm)/$Alq_3$(30nm)/LiF(0.5nm)/Al. The maximum EL emission for the 2.0% DCPXZ-doped device was at 608 nm with CIE coordinates (0.57, 0.42). The EL device exhibited a maximum brightness of 15,000 cd/$m^2$ at 19.4 V and a power efficiency of 1.04 lm/W at a luminance of 100 cd/$m^2$.

  • PDF

정공 주입층 Copper(II)-phthalocyanine의 결정 변화에 따른 유기발광소자의 발광특성연구 (EL Properties of OLEDs with Different Crystal Structures of Hole Injection Layers of Copper(II)-phthalocyanine)

  • 임은주;이기진;한우미;이정윤;차덕준;이용산;김진태
    • 한국전기전자재료학회논문지
    • /
    • 제16권2호
    • /
    • pp.113-119
    • /
    • 2003
  • We report the electrical properties of copper(II)-phthalocyanine(Cu-Pc) as a hole injaction layer in organic light-emitting diode (OLED). OLEDs were constructed by the following material structure : indium tin oxaide (ITO)/ CuPc/ triphenyl-diamine (TPD)/ tris-(8-hydroxyquinoline)aluminum (Alq3)/4-(Dicyanomethlene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)/ Al. we observed that the change of recombination zone by using a DCM detection thin layer (6 ${\AA}$) in a Alq$_3$ emitting layer. layer. Recombination zone was moved toward the cathode as the hole mobility increased due to the heat-treatment temperature of cupc layer increased.