• 제목/요약/키워드: DCM derivatives

검색결과 13건 처리시간 0.018초

몇 가지 치환 Thiadiazole에 대한 전기화학적 연구 (Electrochemical Studies on Some Substituted Thiadiazoles)

  • El Maghraby, A. A.;Abou-Elenien, G. M.;Abdel-Reheem, N. A.;Abdel-Tawab, H. R.
    • 대한화학회지
    • /
    • 제50권4호
    • /
    • pp.307-314
    • /
    • 2006
  • 2-Ketohydrazono-3-phenyl-5-substituted-2,3-dihydro-1,3,4-thiadiazole과 그 유도체들(1a-h)의 산화환원 특성을 백금 전극의 지지전해질로서 0.1 M tetra n-butylammonium perchlorate (TBAP)을 함유한 1,2-dichloroethane (DCE), dichloromethane (DCM), acetonitrile (AN), tetrahydrofuran (THF), and dimethylsulfoxide (DMSO)와 같은 비수용매 속에서 조사하였다. 조사한 화합물들의 산화 및 환원 생성물들을 조절전위 전해법으로 분리 확인하였으며, 산화환원 메커니즘을 제안하고 이를 증명하였다. 조사한 모든 화합물은 잘 알려진 EC 메커니즘에 이은 두 번의 비가역 일전자 과정에 의해 산화되는 반면, 환원의 경우에는 치환기의 성질에 따라, 잘 알려진 EEC 메커니즘에 이은 한번의 이전자 또는 두 번의 연속적인 일전자 과정에 의해 이루어짐을 알았다.

Study of the Electrochemical Redox Characteristics of Some Triazolopyrimidines

  • Maghraby, A.A. El;Elenien, G.M. Abou;Shehata, K.I.
    • 전기화학회지
    • /
    • 제10권3호
    • /
    • pp.159-168
    • /
    • 2007
  • An electrochemical study related to the redox characteristics of Ethyl-3-acetyl-6-methyl-1, 4-diphenyl-4, 3a-dihydro-1, 3, 4-triazolino[3, 4-a] pyrimidine-5-carboxylate ester and its derivatives (1a-f) and (2a-e) in nonaqueous solvents such as 1, 2-dichloroethane (DCE), dichloromethane (DCM), acetonitrile (AN), dimethylsulphoxide (DMSO) and tetrahydrofurane (THF) using $0.1\;mol\;dm^{-3}$ tetrabutylammonium perchlorate (TBAP) as a supporting electrolyte at platinum, glassy carbon and gold electrodes, has been performed using cyclic voltammetry (CV). Controlled potential electrolysis (CPE) is also carried out to elucidate the course of different electrochemical reactions through the separation and identification of the intermediates and final electrolysis products. The redox mechanism is suggested and proved. It was found that all the investigated compounds in all solvents are oxidized in a single irreversible one electron donating process following the well known pattern of the EC-mechanism to give a dimer. On the other hand, these compounds are reduced in a single irreversible one electron step to form the anion radical, which is basic enough to proton from the media forming the radical which undergoes tautomerization and then dimerization processes to give also another bis-compound through N-N linkage formation.

Voltammetric Studies on Some Thiadiazoles and Their Derivatives

  • Maghraby, A. A. El;Abou-Elenien, G. M.;Rateb, N. M;Abdel-Tawab, H. R.
    • 전기화학회지
    • /
    • 제12권1호
    • /
    • pp.54-60
    • /
    • 2009
  • The redox characteristics of 2-arylaldehydehydrazono-3-phenyl-5-substituted-2, 3-dihydro-1, 3, 4-thiadiazoles (1a-h) have been investigated in nonaqueous solvents such as 1, 2-dichloroethane (DCE), dichloromethane (DCM), acetonitrile (AN), Tetrahydrofuran (THF), and dimethylsulfoxide (DMSO) at platinum electrode. Through controlled potential electrolysis, the oxidation and reduction products of the investigated compounds had been separated and indentified. The redox mechanism had been suggested and proved. It had been found that all the investigated compounds were oxidized in two irreversible one-electron processes following the well-known pattern of The EC-mechanism; the first electron loss gives the corresponding cation-radical which is followed by proton removal from the ortho-position in the N-phenyl ring forming the radical. The obtained radical undergoes a second electron uptake from the nitrogen in the N = C group forming the unstable intermediate (di-radical cation) which undergoes ring closure forming the corresponding cation. The formed cation was stabilized in solution through its combination with a perchlorate anion from the medium. On the other hand, these compounds are reduced in a single two-electron process or in a successive two one-electron processes following the well known pattern of the EEC-mechanism according to the nature of the substituent; the first one gives the anion-radical followed by a second electron reduction to give the dianion which is basic enough to abstract protons from the media to saturate the (C = O) bond.