• Title/Summary/Keyword: DC21

Search Result 519, Processing Time 0.024 seconds

Module-based Modeling Method of $3\Phi$ Phase-Controlled Rectifier System for DC Motor Drive under Matlab/Simulink environment (Matlab/Simulink 환경하에서 3상 위상제어 정류기-DC 전동기 구동시스템의 모듈별 모델링 기법)

  • 김상민;한우용;이창구;김성중
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.3
    • /
    • pp.15-21
    • /
    • 2000
  • This paper presents the modeling method of $3\Phi$ phase-controlled rectifier for the DC motor drive in MATLAB/SIMULINK environment. This method has no need to extend the system mathematically and thus it's easy to integrate the various systems. The whole model consists of $3\Phi$ phase-controlled rectifier block, DC motor block and speed/current controller block. The simulation results show that the model outputs are almost similar to those of the real system and therefore that the presented method is suitable for the research of the closed-loop controlled power electronic systems.

  • PDF

Reliability Evaluation of RF Power Amplifier for Wireless Transmitter

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.154-157
    • /
    • 2008
  • A class-E RF(Radio Frequency) power amplifier for wireless application is designed using standard CMOS technology. To drive the class-E power amplifier, a class-F RF power amplifier is used and the reliability characteristics are studied with a class-E load network. The reliability characteristic is improved when a finite-DC feed inductor is used instead of an RF choke with the load. After one year of operating, when the load is an RF choke the output current and voltage of the power amplifier decrease about 17% compared to initial values. But when the load is a finite DC-feed inductor the output current and voltage decrease 9.7%. The S-parameter such as input reflection coefficient(S11) and the forward transmission scattering parameter(S21) is simulated with the stress time. In a finite DC-feed inductor the characteristics of S-parameter are changed slightly compared to an RF-choke inductor. From the simulation results, the class-E power amplifier with a finite DC-feed inductor shows superior reliability characteristics compared to power amplifier using an RF choke.

Implementation of Non-time-varying Duty Ratio transfer function for Improvement of control characteristics bi-directional charger (비시변 시비율 전달함수 구현에 의한 양방향충전기 제어특성 개선)

  • Hwang, Jung Goo;Kim, Sun Pil;Park, Sung Jun
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.20-21
    • /
    • 2013
  • 본 논문에서는 양방향 충전기용 DC/DC 컨버터와 같이 입력전압과 출력전압이 가변하는 제어시스템에서 비시변 시비율 전달함수를 구현하여 제어특성을 개선하고자 한다. 기존제어기 설계에 의해 설계된 이득을 사용하여 제어를 행할 경우 입력전압의 변동에 따라 제어특성이 가변한다. 전압제어기의 각 이득을 시비율의 역수를 취하여 변화함으로서 전체 제어블록에서 시비율 항을 등가적으로 제거할 수 있는 방법이다. 따라서 본 논문에서 제안된 비시변 시비율 전담함수를 양방향 충전기용 DC/DC컨버터에 적용하여 PSIM을 이용한 시뮬레이션과 실험을 통해 타당성과 우수성을 검증하였다.

  • PDF

Algorithm of Detecting Ground Fault by Using Insulation Monitoring Device(IMD) in Ungrounded DC System (직류 비접지계통에서 절연저항측정장치(IMD)를 이용한 사고검출 알고리즘)

  • Kim, Ki-Young;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.528-535
    • /
    • 2020
  • Recently, the protection coordination method of DC systems has been presented because renewable energy and distributed resources are being installed and operated in distribution systems. On the other hand, it is difficult to detect ground faults because there is no significant difference compared to a steady-state current in ungrounded IT systems, such as DC load networks and urban railways. Therefore, this paper formulates the detection principle of IMD (Insulation Monitoring Device) to use it as a protection coordination device in a DC system. Based on the signal injection method of IMD, which is analyzed by a wavelet transform, this paper presents an algorithm of detecting ground faults in a DC system in a fast and accurate manner. In addition, this paper modeled an IMD and an ungrounded DC system using the PSCAD/EMTDC S/W and performed numerical analysis of a wavelet transform with the Matlab S/W. The simulation results of a ground fault case in an ungrounded DC system showed that the proposed algorithm and modeling are useful and practical tools for detecting a ground fault in a DC system.

DC V-I Characteristics of a High Temperature Superconductor for a 600 kJ Superconducting Magnetic Energy Storage Device in an Oblique External Magnetic Field (경사 외부자장에 대한 600 kJ급 SMES용 HTS도체의 DC V-I 특성)

  • Li, Zhu-Yong;Ma, Yong-Hu;Ryu, Kyung-Woo;Choi, Se-Yong;Kim, Hae-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.79-84
    • /
    • 2008
  • We are developing a small-sized high temperature superconducting magnetic energy storage (HTS-SMES) magnet with the nominal storage capacity of 600 kJ, which provides electric power with high quality to sensitive electric loads. Critical current and N-value of a high temperature superconductor with large current, which was selected for the development of the 600 kJ HTS-SMES magnet, were investigated in various oblique external magnetic fields. Based on the critical current and N-value measured for the short sample conductor, we discussed the DC V - I characteristic of a model coil fabricated with the same conductor of 500 m. The results show that the measured critical current and N-value of the conductor for parallel field are constant in external magnetic fields less than about 0.2 T. However, for oblique fields, its critical current and N -value abruptly decrease in all external magnetic fields. Moreover, the measured critical current of the model coil well agrees with the numerically calculated one based on the DC V - I characteristic measured for the short sample conductor. This suggest that losses and critical currents for an HTS-SMES magnet made up of a high temperature superconductor with anisotropic characteristic are predictable from the data of a short sample conductor.

Effect of Dynamic Electric Fields on Dielectric Reliability in Cu Damascene Interconnects (동적인 전기장이 다마신 구리 배선에서의 절연파괴에 미치는 영향)

  • Yeon, Han-Wool;Song, Jun-Young;Lim, Seung-Min;Bae, Jang-Yong;Hwang, Yuchul;Joo, Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.111-115
    • /
    • 2014
  • Effect of dynamic electric fields on dielectric breakdown behavior in Cu damascene interconnects was investigated. Among the DC, unipolar, and bipolar pulse conditions, the longest dielectric lifetime is observed under the bipolar condition because backward Cu ion drift occurs when the direction of electric field is changed by 180 degrees and Cu contamination is prohibited as a results. Under the unipolar pulse condition, the dielectric lifetime increases as pulse frequency increases and it exceed the lifetime under DC condition. It suggests that the intrinsic breakdown of dielectrics significantly affect the dielectric breakdown in addition to Cu contamination. As the unipolar pulse width decreases, dielectric bond breakdown is more difficult to occur.

Circuit Design for Noise Removal of Sine Wave Hall Sensor Signal (정현파 Hall Sensor 신호의 잡음제거를 위한 회로설계)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.135-141
    • /
    • 2021
  • Interest is growing in the design and development of square wave driven BLDC permanent magnet motors suitable for industrial automation, and the development of position detection circuits and drivers. However, this motor is somewhat limited in its application despite the price and functional advantages due to the decrease in efficiency due to switching loss and vibration and noise. In the process of designing and assembling a BLDC motor, the magnetic pole angle is not uniform or the magnetic flux distribution is distorted due to problems in magnetic circuit design or product non-uniformity in the assembly process. Therefore, these things cause position detection deviation and deteriorate the motor characteristics. In addition, the sine wave driven BLDC system can operate stably only when the signal generated from the position sensor is accurately fed back to the driver. However, since the generated signal cannot perform stable position detection due to the occurrence of DC offset component due to magnetic flux density deviation or magnetization technology, which is an external influence, this study intends to study the proposed circuit that can remove the DC offset component.

Changes in Blood Pressure and Heart Rate during Decompressive Craniectomy

  • Jo, Kwang Wook;Jung, Hyun-Ju;Yoo, Do Sung;Park, Hae-Kwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.6
    • /
    • pp.957-965
    • /
    • 2021
  • Objective : Rapid increase in intracranial pressure (ICP) can result in hypertension, bradycardia and apnea, referred to as the Cushing phenomenon. During decompressive craniectomy (DC), rapid ICP decreases can cause changes in mean atrial blood pressure (mABP) and heart rate (HR), which may be an indicator of intact autoregulation and vasomotor reflex. Methods : A total of 82 patients who underwent DC due to traumatic brain injury (42 cases), hypertensive intracerebral hematoma (19 cases), or major infarction (21 cases) were included in this prospective study. Simultaneous ICP, mABP, and HR changes were monitored in one minute intervals during, prior to and 5-10 minutes following the DC. Results : After DC, the ICP decreased from 38.1±16.3 mmHg to 9.5±14.2 mmHg (p<0.001) and the mABP decreased from 86.4±14.5 mmHg to 72.5±11.4 mmHg (p<0.001). Conversly, overall HR was no significantly changed in HR, which was 100.1±19.7 rate/min prior to DC and 99.7±18.2 rate/min (p=0.848) after DC. Notably when the HR increased after DC, it correlated with a favorable outcome (p<0.001), however mortality was increased (p=0.032) when the HR decreased or remained unchanged. Conclusion : In this study, ICP was decreased in all patients after DC. Changes in HR were an indicator of preserved autoregulation and vasomotor reflex. The clinical outcome was improved in patients with increased HR after DC.

A PCS Control Strategy for Hybrid ESS with Function of Emergency Power Supply (비상전원 기능을 갖는 하이브리드 ESS를 위한 PCS 제어전략)

  • Kim, Sang-Jin;Kwon, Min-Ho;Choi, Se-Wan;Paik, Seok-Min;Kim, Mi-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.302-311
    • /
    • 2016
  • This paper proposes a hybrid ESS that integrates an energy storage system (ESS) with an uninterruptible power supply (UPS). The hybrid ESS has a demand management and emergency power supply function while increasing the battery utilization of the UPS, which has just been used in a power failure. In addition to the critical load, the proposed system augments the capacity of emergency generation using an additional load, which has voltage and frequency-dependent characteristics to the grid side. The control algorithm of the AC-DC converter and bidirectional DC-DC converter is proposed for demand management and emergency power supply. Furthermore, seamless and autonomous transfer methods to alleviate the transient during mode transfer are proposed. To validate the proposed control scheme, experimental results from a 5 kW prototype are provided.