• Title/Summary/Keyword: DC-voltage

Search Result 4,533, Processing Time 0.035 seconds

The advancing techniques and sputtering effects of oxide films fabricated by Stationary Plasma Thruster (SPT) with Ar and $O_2$ gases

  • Jung Cho;Yury Ermakov;Yoon, Ki-Hyun;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.216-216
    • /
    • 1999
  • The usage of a stationary plasma thruster (SPT) ion source, invented previously for space application in Russia, in experiments with surface modifications and film deposition systems is reported here. Plasma in the SPT is formed and accelerated in electric discharge taking place in the crossed axial electric and radial magnetic fields. Brief description of the construction of specific model of SPT used in the experiments is presented. With gas flow rate 39ml/min, ion current distributions at several distances from the source are obtained. These was equal to 1~3 mA/$\textrm{cm}^2$ within an ion beam ejection angle of $\pm$20$^{\circ}$with discharge voltage 160V for Ar as a working gas. Such an extremely high ion current density allows us to obtain the Ti metal films with deposition rate of $\AA$/sec by sputtering of Ti target. It is shown a possibility of using of reactive gases in SPT (O2 and N2) along with high purity inert gases used for cathode to prevent the latter contamination. It is shown the SPT can be operated at the discharge and accelerating boltages up to 600V. The results of presented experiments show high promises of the SPT in sputtering and surface modification systems for deposition of oxide thin films on Si or polymer substrates for semiconductor devices, optical coatings and metal corrosion barrier layers. Also, we have been tried to establish in application of the modeling expertise gained in electric and ionic propulsion to permit numerical simulation of additional processing systems. In this mechanism, it will be compared with conventional DC sputtering for film microstructure, chemical composition and crystallographic considerations.

  • PDF

Effect of Residual Stress on Raman Spectra in Tetrahedral Amorphous Carbon(ta-C) Film

  • Shin, Jin-Koog;Lee, Churl-Seung;Moon, Myoung-Woon;Oh, Kyu-Hwan;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.135-135
    • /
    • 1999
  • It is well known that Raman spectroscopy is powerful tool in analysis of sp3/sp3 bonding fraction in diamond-like carbon(DLC) films. Raman spectra of DLC film is composed of D-peak centered at 1350cm-1 and G-peak centered at 1530cm-1. The sp3/sp3 fraction is qualitatively acquired by deconvolution method. However, in case of DLC film, it is generally observed that G-peak position shifts toward low wavenumber as th sp3 fraction increases. However, opposite results were frequently observed in ta-C films. ta-C film has much higher residual compressive stress due to its high sp3 fraction compared to the DLC films deposited by CVD method. Effect of residual stress on G-peak position is most recommendable parameter in Raman analysis of ta-C, due to its smallest fitting error among many parameters acquired by peak deconvolution of symmetric spectra. In current study, the effect of residual stress on Raman spectra was quantitatively evaluated by free-hang method. ta-C films of different residual stress were deposited on Si-wafer by modifying DC-bias voltage during deposition. The variation of the G-peak position along the etching depth were observed in the free-hangs of 20~30${\mu}{\textrm}{m}$ etching depth. Mathematical result based on Airy stress function, was compared with experimental results. The more reliable analysis excluding stress-induced shift was possible by elimination of the Raman shift due to residual compressiove stress.

  • PDF

Effects of PEO Conditions on Surface Properties of AZ91 Mg Alloy (PEO 처리조건에 따른 마그네슘 합금 AZ91의 표면특성변화에 관한 연구)

  • Park, Kyeong-Jin;Jung, Myung-Won;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.71-77
    • /
    • 2010
  • Mg alloys have been used in automobile industry, aerospace, mobile phone and computer parts owing to low density. However, they have a restricted application because of low mechanical and poor corrosion properties. Thus, improved surface treatments are required to produce protective films. Environmental friendly Plasma Electrolytic Oxidation(PEO) was used to produce protective films on magnesium alloys. PEO process is combined electrochemical oxidation with plasma treatment in the aqueous solution. In this study, the effects of applied voltage and applied current on the surface morphologies were investigated. Also, the effects of Direct Current(DC) and Pulse Current(PC) were compared. PC and constant current control gave the dense coating on the Mg alloy. The potentiodynamic polarization tests were carried out for the analysis of corrosion properties of specimens. The surface hardness was 5 times higher than that of untreated AZ91D.

Heat Dissipation Technology of IGBT Module Package (IGBT 전력반도체 모듈 패키지의 방열 기술)

  • Suh, Il-Woong;Jung, Hoon-Sun;Lee, Young-Ho;Kim, Young-Hun;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.7-17
    • /
    • 2014
  • Power electronics modules are semiconductor components that are widely used in airplanes, trains, automobiles, and energy generation and conversion facilities. In particular, insulated gate bipolar transistors(IGBT) have been widely utilized in high power and fast switching applications for power management including power supplies, uninterruptible power systems, and AC/DC converters. In these days, IGBT are the predominant power semiconductors for high current applications in electrical and hybrid vehicles application. In these application environments, the physical conditions are often severe with strong electric currents, high voltage, high temperature, high humidity, and vibrations. Therefore, IGBT module packages involves a number of challenges for the design engineer in terms of reliability. Thermal and thermal-mechanical management are critical for power electronics modules. The failure mechanisms that limit the number of power cycles are caused by the coefficient of thermal expansion mismatch between the materials used in the IGBT modules. All interfaces in the module could be locations for potential failures. Therefore, a proper thermal design where the temperature does not exceed an allowable limit of the devices has been a key factor in developing IGBT modules. In this paper, we discussed the effects of various package materials on heat dissipation and thermal management, as well as recent technology of the new package materials.

High Isolation and Linearity MMIC SPDT Switch for Dual Band Wireless LAN Applications (이중대역 무선랜 응용을 위한 높은 격리도와 선형성을 갖는 MMIC SPDT 스위치)

  • Lee, Kang-Ho;Koo, Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.143-148
    • /
    • 2006
  • This paper presents a high isolation and power-handling single-pole double-throw(SPDT) switch for dual band wireless LAN applications. The switch circuit has asymmetric topology which uses stacked-gate to have high power-handling and isolation for the Tx path. The proposed SPDT switch has been designed with optimum gate-width, bias, and number of stacked-gate FET. This SPDT switch has been implemented with $0.25{\mu}m$ GaAs pHEMT process which has Gmmax of 500mS/mm and fmax of 150GHz. The designed SPDT switch has the measured insertion loss of better than 0.9dB and isolation of better than 40dB for the Tx path and 25dB for the Rx path and the high power handling capability with PldB of about 23dBm for control voltage of -3/0V. The fabricated SPDT switch chip size is $1.8mm{\times}1.8mm$.

A study on the deposition of DLC films by magnetron PECVD (Magnetron PECVD에 의한 DLC 박막의 제작에 관한 연구)

  • Kim, Soung-Young;Lee, Jai-Sung;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1446-1449
    • /
    • 1996
  • Thin films of diamond-like carbon(DLC) have been deposited using a magnetron plasma-enhanced chemical vapor deposition(PECVD) method with an rf(13.56 MHz) plasma of $C_{3}H_{8}$. From the Langmuir probe I-V characteristics, it can be observed that increasing the magnetic field yields an increase of the temperature($T_e$) and density($N_e$) of electron. At a magnetic field of 82 Gauss, the estimated values of $T_e$ and $N_e$ are approximately $1.5\;{\times}\;10^5$ K(13.5 eV) and $1.3\;{\times}\;10^{11}\;cm^{-3}$, respectively. Such a highly dense plasma can be attributed to the enhanced ionization caused by the cyclotron motion of electrons in the presence of a magnetic field. On the other hand, the negative dc self-bias voltage($-V_{sb}$) decreases with an increasing magnetic field, which is irrespective of gas pressure in the range of $1{\sim}7$ mTorr. This result is well explained by a theoretical model considering the variation of $T_e$. Deposition rates of DLC films increases with a magnetic field. This may be due to the increased mean free path of electrons in the magnetron plasma. Structures of DLC films are examined by using various techniques such as FTIR and Raman spectroscopy. Most of hydrocarbon bonds in DLC films prepared consist of $sp^3$ tetrahedral bonds. Increasing the rf power leads to an enhancement of cross-linking of carbon atoms in DLC films. At approximately 140 W, the maximum film density obtained is about 2.4 $g/cm^3$.

  • PDF

The Investigation on Thermal Aging Characteristics of Oil-Paper Insulation in Bushing

  • Liao, Rui-jin;Hu, En-de;Yang, Li-jun;Xu, Zuo-ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1114-1123
    • /
    • 2015
  • Bushing is the key link to connect outer and inner insulating systems and also the essential electric accessory in electric power system, especially in the high voltage engineering (AC 1000kV, DC 800kV). This paper presented the experimental research of thermal aging characteristic of oil-paper insulation used in bushing. A thermally accelerated aging experiment at 90℃ was performed. The bushing models containing five layers of paper were sealed into the aging vessels and further aged for 250 days. Then several important parameters associated with the aging were observed and evaluated. The results showed that the degree of polymerization (DP) of papers gradually decreased. The DP values of outermost layer and middle layer fit well into the second-order kinematic model and first-order kinematic model, respectively. Less deterioration speed of the inter-layer paper than outer layer was confirmed by the variation of DP. Hydrolysis was considered as the main cause to this phenomenon. In addition, the logarithm of the furfural concentrations in insulation oil was found to have good linear relationship with DP of papers. Interestingly, when the aging time is about 250 days and DP is 419, the aging process reaches an inflection point at which the DP approaches the leveling off degree of polymerization (LODP) value. Both tanδ and acid number of oils increased, while surface and volume resistivity of papers decreased. The obtained results demonstrated that thermal aging and moisture absorbed in papers brought great influence to the degradation of insulating paper, leading to rapid decrease of DP and increase of the tanδ. Thus, the bushing should be avoided from damp and real-time monitoring to the variation of tanδ and DP values of paper is an effective way to evaluate the insulation status of bushing.

The Fast Interlock Controller for High Power Pulse Modulator at PAL-XFEL (고전압 펄스 모듈레이터의 고속 인터록 제어)

  • Kim, S.H.;Park, S.S.;Kwon, S.J.;Lee, H.S.;Kang, H.S.;Ko, I.S.;Kim, D.S.;Seo, M.H.;Lee, S.Y.;Moon, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.818-819
    • /
    • 2015
  • PAL-XFEL 장치에 사용 할 고전압 펄스 모듈레이터 출력파워는 수 ${\mu}s$ 범위의 짧은 고전압(400 kV), 대전류(500 A) 펄스를 요구한다. 이러한 펄스파워를 얻기 위해서 PFN(Pulse Forming Network)에 에너지를 축적하고, 플라즈마 스위치인 싸이라트론을 통하여 에너지를 신속하게 클라이스트론 쪽으로 전달한다. 클라이스트론은 모듈레이터에서 공급하는 펄스 전원을 이용하여 RF를 증폭하는 대출력 고주파 증폭장치이다. 고전압 펄스 모듈레이터 제어기는 고속펄스 신호처리 모듈(Fast Pulse Signal Conditioning Module), PLC(Programmable Logic Controller)로 구성되어 있다. 고전압 펄스 모듈레이터에 사용하는 대용량 싸이라트론은 고전력을 스위칭 할 때 발생하는 스위칭 노이즈는 매우 크다. 이러한 노이즈는 모듈레이터의 출력 시그널인 빔 전압, 빔 전류, EOLC(End of Line Clipper) 전류, DC high voltage에 섞여 있으면서 신호 왜곡 및 제어장치의 고장을 유발시킨다. 이처럼 노이즈가 많이 포함되어 있는 아닐로그 신호를 깨끗한 신호(a clean signal)로 바꾸어주는 노이즈 필터링 장치인 고속펄스 신호처리 모듈을 제작하여 실험한 결과를 알아보고 모듈레이터 인터록 시스템인 PLC에서 Dynamic Interlock의 응답시간을 빠르게 하기위한 회로 수정에 대한 결과에 관하여 기술하고자 한다.

  • PDF

High Transparent, High Mobility MoO3 Intergraded InZnO Films for Use as a Transparent Anode in Organic Solar cells

  • Kim, Hyo-Jung;Kang, Sin-Bi;Na, Seok-In;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.343-343
    • /
    • 2014
  • We reported on the electrical, optical, structural and morphological properties fabricated by co-sputtering for use as an anode for organic solar cells (OSCs). By adjusting RF and DC power of $MoO_3$ and IZO targets during co-sputtering, we fabricated the $MoO_3$-IZO electrode with graded content of the $MoO_3$ on the IZO films. At optimized $MoO_3$ thickness of 20 nm, the $MoO_3$ graded IZO electrode showed a higher mobility ($33cm^2/V-Sec$) than directly deposited $MoO_3$ on IZO film ($26cm^2/V-Sec$). At visible range (400nm~800nm), optical transmittance of the $MoO_3$ graded IZO electrode is higher than that of directly deposited $MoO_3$ on IZO film. High mobility of $MoO_3$ graded on IZO is attributed to less interface scattering between $MoO_3$ and IZO. To investigate the feasibility of $MoO_3$ graded IZO films, we fabricated conventional P3HT:PCBM based OSCs with $MoO_3$ graded IZO as a function of MoO3 thickness. The OSC fabricated on the $MoO_3$ graded IZO anode showed a fill factor of 66.53%, a short circuit current of $8.121mA/cm^2$, an open circuit voltage of 0.592 V, and a power conversion efficiency of 3.2% comparable to OSC fabricated on ITO anode and higher than directly deposited $MoO_3$ on IZO film. We suggested possible mechanism to explain the high performance of OSCs with a $MoO_3$ graded IZO.

  • PDF

Microwave Annealing in Ag/HfO2/Pt Structured ReRAM Device

  • Kim, Jang-Han;Kim, Hong-Ki;Jang, Ki-Hyun;Bae, Tae-Eon;Cho, Won-Ju;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.373-373
    • /
    • 2014
  • Resistive-change random access memory (ReRAM) device is one of the promising candidates owing to its simple structure, high scalability potential and low power operation. Many resistive switching devices using transition metal oxides materials such as NiO, Al2O3, ZnO, HfO2, $TiO_2$, have attracting increased attention in recent years as the next-generation nonvolatile memory. Among various transition metal oxides materials, HfO2 has been adopted as the gate dielectric in advanced Si devices. For this reason, it is advantageous to develop an HfO2-based ReRAM devices to leverage its compatibility with Si. However, the annealing temperature of these high-k thin films for a suitable resistive memory switching is high, so there are several reports for low temperature process including microwave irradiation. In this paper, we demonstrate the bipolar resistive switching characteristics in the microwave irradiation annealing processed Ag/HfO2/Pt ReRAM device. Compared to the as-deposited Ag/HfO2/Pt device, highly improved uniformity of resistance values and operating voltage were obtained from the micro wave annealing processed HfO2 ReRAM device. In addition, a stable DC endurance (>100 cycles) and a high data retention (>104 sec) were achieved.

  • PDF