• Title/Summary/Keyword: DC-Sputtering

Search Result 1,034, Processing Time 0.027 seconds

Syntheses and mechanical properties of Cr-Mo-Si-N coatings by a hybrid coating system (하이브리드 코팅시스템을 이용한 Cr-Mo-Si-N 코팅의 합성 및 기계적 특성)

  • Yun, Ji-Hwan;An, Seong-Gyu;Lee, Ju-Hui;Kim, Gwang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.103-104
    • /
    • 2007
  • Cr-Mo-Si-N 코팅막은 AISI D2 모재와 Si 모재위에 $Ar/N_2$ 혼합기체를 사용하여 AIP (arc ion plating) 방법과 마그네트론 스퍼터링 (DC magnetron sputtering) 방법을 결합시킨 하이브리드 코팅시스템을 이용하여, 증착하였다. XRD, HRTEM, XPS 등의 분석장비를 이용하여 Cr-Mo-Si-N 코팅의 미세구조를 관찰하였다. Cr-Mo-Si-N 코팅의 경도는 Si함량이 12.1 at.%에서 약 50 GPa의 최고치를 나타냈으며, 평균 마찰계수는 Si 함량이 증가할수록 감소하였다.

  • PDF

Unequal Activation Volumes of Wall-motion and Nucleation Process in Co/Pt Multilayers

  • Cho, Yoon-Chul;Choe, Sug-Bong;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • v.5 no.4
    • /
    • pp.116-119
    • /
    • 2000
  • Magnetic field dependence of magnetization reversal in Co/Pt multilayers was quantitatively investigated. Serial samples of Co/Pt multilayers were prepared by dc-magnetron sputtering under various Ar pressures. Magnetization reversal was monitored by magnetization viscosity measurement and direct domain observation using a magneto-optical microscope system, and the wall-motion speed V and the nucleation rate R were determined using a domain reversal model based on time-resolved domain reversal patterns. Both V and R were found to be exponentially dependent on the applied reversing field. From the exponential dependencies, the activation volumes for wall motion and nucleation could be determined, based on a thermally activated relaxation model, and the wall-motion activation volume was found to be slightly larger than the nucleation activation volume.

  • PDF

THE EFFECT OF OXYGEN GAS PRESSURE ON THE PROPERTIES OF Pb ADDED Ba-FERRITE SPUTTERED FILMS

  • Morisako, A.;Wada, F.;Matsumoto, M.;Naoe, M.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.627-630
    • /
    • 1995
  • BaM films have a lot of advantage of chemical stability and mechanical stability as compared with a metallic thin film. In this paper, (Ba.Pb)M films have been prepared by using dc magnetron sputtering system and the dependences of their crystallographic characteristics and magnetic properties on oxygen pressure($Po_{2}$) were studied. The films prepared at $Po_{2}$ of around 0.02mTorr exhibit a fine particle-like structure and ${\Delta}{\theta}_{50}$ is as small as $1^{\circ}$. $Hc_{\bot},\;Hc_{//}$ and Ms of (Ba.Pb)M films are 700-800Oe, 200Oe and 180-230emu/cc, respectively.

  • PDF

Effect of Rapid Thermal Annealing on the Transparent Conduction and Heater Property of ZnO/Cu/ZnO Thin Films (RTA 후속 열처리에 따른 ZnO/Cu/ZnO 박막의 투명전극 및 발열체 특성 연구)

  • Yeon-Hak Lee;Daeil Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.115-120
    • /
    • 2023
  • ZnO/Cu/ZnO (ZCZ) thin film deposited on the glass substrate with DC and RF magnetron sputtering was rapid thermal annealed (RTA) and then effect of thermal temperature on the opto-electical and transparent heater properties of the films were considered. The visible transmittance and electrical resistivity are depends on the annealing temperature. The electrical resistivity decreased from 1.68 × 10-3 Ωcm to 1.18 × 10-3 Ωcm and the films annealed at 400℃ show a higher transmittance of 78.5%. In a heat radiation test, when a bias voltage of 20 V is applied to the ZCZ film annealed at 400℃, its steady state temperature is about 70.7℃. In a repetition test, the steady state temperature is reached within 15s for all of the bias voltages.

Effect of the Cu Bottom Layer on the Optical and Electrical Properties of In2O3/Cu Thin Films (구리 기저 층이 In2O3/Cu 박막의 광학적, 전기적 특성에 미치는 영향)

  • Kim, Dae-Il
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.356-360
    • /
    • 2011
  • Indium oxide ($In_2O_3$) single layer and $In_2O_3$/copper (Cu) bi-layer films were prepared on glass substrates by RF and DC magnetron sputtering without intentional substrate heating. In order to determine the effect of the Cu bottom layer on the optical, electrical and structural properties of $In_2O_3$ films, 3-nm-thick Cu film was deposited on the glass substrate prior to deposition of the $In_2O_3$ films. As-deposited $In_2O_3$ films had an optical transmittance of 79% in the visible wavelength region and a sheet resistance of 2,300 ${\Omega}/{\square}$, while the $In_2O_3$/Cu film had optical and electrical properties that were influenced by the Cu bottom layer. $In_2O_3$/Cu films had a lower sheet resistance of 110 ${\Omega}/{\square}$ and an optical transmittance of 71%. Based on the figure of merit, it can be concluded that the Cu bottom layer effectively increases the performance of $In_2O_3$ films for use as transparent conducting oxides in flexible display applications.

FABRICATION OF Nb/Al SUPERCONDUCTING TUNNEL JUNCTION (Nb/Al SUPERCONDUCTING TUNNEL JUNCTION의 제작)

  • Cho, Sung-Ik;Park, Young-Sik;Park, Jang-Hyun;Lee, Yong-Ho;Lee, Sang-Kil;Kim, Sug-Whan;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.481-492
    • /
    • 2004
  • We report the successful fabrication and I-V curve superconductivity test results of the Nb/Al-based superconducting tunnel junctions. STJs with side-lengths of 20, 40, 60 and $80{\mu}m$ were fabricated by deposition of polycrystalline Nb/Al/AlOx/Al/Nb 5-layer thin films incorporated on a 3-inch Si wafer. STJ was designed by $Tanner^{TM}$ L-Edit 8.3 program, and fabricated in SQUID fabrication facility, KRISS. S-layer STJ thin-films were fabricated using UV photolithography, DC magnetron sputtering, Reactive ion etching, and CVD(Chemical Vapor Deposition) techniques. Superconducting state test for STJ was succeeded in 4K with liquid helium cooling system. Their performance indicators such ie energy gap, normal resistance, normal resistivity, dynamic resistance, dynamic resistivity, and quality factor were measured from I-V curve. Fabricated Nb/Al STJ shows $11\%$ higher FWHM energy resolution than genuine Nb STJ.

Effect of RuO$_2$ Thin Film Microstructure on Characteristics of Thin Film Micro-supercapacitor ($RuO_2$박막의 미세 구조가 박막형 마이크로 슈퍼캐패시터의 특성에 미치는 영향)

  • Kim, Han-Ki;Yoon, Young-Soo;Lim, Jae-Hong;Cho, Won-Il;Seong, Tae-Yeon;Shin, Young-Hwa
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.671-678
    • /
    • 2001
  • All solid-state thin film micro supercapacitor, which consists of $RuO_2$/LiPON/$RuO_2$ multi layer structure, was fabricated on Pt/Ti/Si substrate using a $RuO_2$ electrode. Bottom $RuO_2$ electrode was grown by dc reactive sputtering system with increasing $O_2/[Ar+O_2]$ ratio at room temperature, and a LiPON electrolyte film was subsequently deposited on the bottom $RuO_2$ electrode at pure nitrogen ambient by rf reactive sputtering system. Room temperature charge-discharge measurements based on a symmetric $RuO_2$/LiPON/$RuO_2$ structure clearly demonstrates the cyclibility dependence on the microstructure of the $RuO_2$ electrode. Using both glancing angle x-ray diffraction (GXRD) and transmission electron microscopy (TEM) analysis, it was found that the microstructure of the $RuO_2$ electrode was dependent on the oxygen flow ratio. In addition, x- ray photoelectron spectroscopy(XPS) examination shows that the Ru-O binding energy is affected by increasing oxygen flow ratio. Furthermore, TEM and AES depth profile analysis after cycling demonstrates that the interface layer formed by interfacial reaction between LiPON and $RuO_2$ act as a main factor in the degradation of the cyclibility of the thin film micro-supercapacitor.

  • PDF

Friction and Wear Behavior of Ultra-Thin TiN Film during Sliding Wear against Alumina and Hardened Steel (마모 상대재 변화에 따른 TiN 극박막의 마찰 및 마모거동)

  • Song, Myeong-Hun;Lee, Jae-Gap;Kim, Yong-Seok
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.62-68
    • /
    • 2000
  • Ultra thin TiN films (50∼700nm thickness) were deposited on AISI 304 stainless steel substrates using a reactive DC magnetron sputtering deposition process to investigate their wear and friction properties. Dry sliding wear tests of the films were carried out against hardened steel and alumina counterparts using a pin-on-disk type wear tester at room temperature. Variation of friction coefficient was measured as a function of film thickness, load, sliding speed and roughness of the substrate. Worn surfaces of the film were examined by a scanning electron microscope. Wear resistance of the TiN film increased with the increase of the film thickness. The TiN film showed relatively high wear resistance in spite of its ultra thin thickness when it is mated by the steel counterpart, while it showed poor wear resistance with the alumina counterpart. The good wear resistance with the steel counterpart was explained by the formation of oxide layers on the film surface and sound interface character between the ultra thin film and the substrate.

  • PDF

A Study on the Perpendicular Magnetic Anisotropy of Co-Pt Alloy Thin Films Deposited by DC Magnetron Sputtening (직류 마그네트론 스퍼터링으로 형성한 Co-Pt 합금박막의 수직자화기구에 대한 연구)

  • 박성언;김기범
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.3
    • /
    • pp.263-271
    • /
    • 1994
  • We have produced $Co_{1-x}Pt_{x}(X\;=\;0.53\;and\;0.75)$ alloy films by DC magnetron sputtering at various substrate temperatures and sputtering pressures. Sputter-deposited Co-Pt alloy films showed a strong (111) texture, and the degree of (111) texture of the as-deposited film was found to depend on the substrate temperature and Ar pressure. However, we observed that the degree of (111) texture did not affect the magnetic properties. In addition, we have investigated the effect of heat-treatment on magnetic properties of these films. While the magnetic properties of the $Co_{0.25}Pt_{0.75}$ alloy films showed no noticeable changes, the coercivities and the squarenesses of the $Co_{0.47}Pt_{0.53}$ alloy films were drastically increased by annealing. Structural analysis using transmission electron microscopy(TEM) and x-ray diffractornetry(XRD) revealed that $CoPt(L1_{0})$ and $CoPt_3(L1_{2})$ ordered phases, respectively, were formed, each with a strong (111) texture. By comparing the magnetic properties between $CoPt(L1_{0})$ and $CoPt_3(L1_{2})$ ordered phases in relation to the atomic arrangements in a unit cell, we conclude that the magnetic anisotropy in the Co-Pt alloy system depends mainly on the atomic arrangements of Co and Pt.

  • PDF

Diffusion barrier properties of Mo compound thin films (Mo-화합물의 확산방지막으로서의 성질에 관한 연구)

  • 김지형;이용혁;권용성;염근영;송종한
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.2
    • /
    • pp.143-150
    • /
    • 1997
  • In this study, doffusion barrier properties of 1000 $\AA$ thick molybdenum compound(Mo, Mo-N, $MoSi_2$, Mo-Si-N) films were investigated using sheet resistance measurement, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), Scanning electron mircoscopy(SEM), and Rutherford back-scattering spectrometry(RBS). Each barrier material was deposited by the dc magnetron sputtering and annealed at 300-$800^{\circ}C$ for 30 min in vacuum. Mo and MoSi2 barrier were faied at low temperatures due to Cu diffusion through grain boundaries and defects in Mo thin film and the reaction of Cu with Si within $MoSi_2$, respectively. A failure temperature could be raised to $650^{\circ}C$-30 min in the Mo barrier system and to $700^{\circ}C$-30 min in the Mo-silicide system by replacing Mo and $MoSi_2$ with Mo-N and Mo-Si-N, respectively. The crystallization temperature in the Mo-silicide film was raised by the addition of $N_2$. It is considered that not only the $N_2$, stuffing effect but also the variation of crystallization temperature affects the reaction of Cu with Si within Mo-silicide. It is found that Mo-Si-N is the more effective barrier than Mo, $MoSi_2$, or Mo-N to copper penetraion preventing Cu reaction with the substrate for $30^{\circ}C$min at a temperature higher than $650^{\circ}C$.

  • PDF