• Title/Summary/Keyword: DC-DC chopper

Search Result 136, Processing Time 0.038 seconds

Boost Type ZVS-PWM Chopper-Fed DC-DC Power Converter with Load-Side Auxiliary Resonant Snubber and Its Performance Evaluations

  • Ogura, Koki;Chandhaket, Srawouth;Ahmed, Tarek;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.147-154
    • /
    • 2003
  • This paper presents a high-frequency boost type ZVS-PWM chopper-fed DC-DC power converter with a single active auxiliary edge-resonant snubber at the load stage which can be designed for power conditioners such as solar photovoltaic generation, fuel cell generation, battery and super capacitor energy storages. Its principle operation in steady-state is described in addition to a prototype setup. The experimental results of boost type ZVS-PWM chopper proposed here, are evaluated and verified with a practical design model in terms of its switching voltage and current waveforms, the switching v-i trajectory and the temperature performance of IGBT module, the actual power conversion efficiency, and the EMI of radiated and conducted emissions, and then discussed and compared with the hard switching scheme from an experimental point of view. Finally, this paper proposes a practical method to suppress parasitic oscillation due to the active auxiliary resonant switch at ZCS turn-off mode transition with the aid of an additional lossless clamping diode loop, and can be reduced the EMI conducted emission.

A Utility Interactive Photovoltaic Generation System using PWM Chopper and Current Source Inverter (PWM 쵸퍼와 전류형 인버터를 이용한 계통연계형 태양광발전시스템)

  • 이승환;성낙규;오봉환;검성남;이훈구;김용주;한경희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.323-329
    • /
    • 1998
  • In this paper, we compose of the utility interactive photovoltaic(PV) generation system with a PWM stepdown chopper and a current source inverter. The stepdown chopper is controlled by the several gate pulses (twice frequency of utility voltage, square pulse and without the chopper) of chopper part to reduce pulsation of DC current and size of DC reactor. PV current only is measured for maximum power point tracking without any influence on the variation of insolation and temperature. Therefore, we can control modulation factor of the chopper to operate at maximum power point of solar cell. And, the utility interactive photovoltaic generation system supplies an AC power to the load and the utility power system.

  • PDF

Four Quadrant Drives of Electric Vehicle by Two Quadrant Chopper (2상한 쵸퍼에 의한 전기자동차의 4상한 운전)

  • Shin, Jong-Han;Sung, Nark-Kuy;Lee, Seung-Hwan;Kang, Seung-Wook;Kim, Yong-Joo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.473-475
    • /
    • 1996
  • In this paper, bilateral variable-ratio dc chopper system for electric vehicle is proposed. We present the method which is able to simplify the main synthetic chopper circuit by selecting among the forward powering, forward regenerative braking, backward powering, and backward regenerative braking only by control signal. By conducting the experiment with separately excited dc motor, it is confirmed that two quadrant chopper can drive four quadrant operation.

  • PDF

A High Efficiency and High Power Chopper Circuit QRAS using Soft Switching under Test Evaluation at 8kW

  • Tsuruta Yukinori;Kawamura Atsuo
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • This paper is a record of the study on a high efficiency and high power chopper based on the new soft switching method QRAS (Quasi~resonant Regenerating Active Snubber) designed for a Fuel Cell Electric Vehicle (FCEV). This power chopper is basically proposed for 25kHz soft switching. To confirm the practicality and effectiveness of the converter, the fabrication of a prototype-model using IGBTs was completed. Additionally, a 8kW rating test, a light load test, a current discontinuous mode test and a stable operation resonance test was completed. The circuit geometry, the basic operation, and the 8kW one-tenth-prototype test results are reported with a $97.5\%$ efficiency measurement.

Design and Control of Braking Chopper Circuit for Ventilation Inverter of Traction Control System (고속전철용 추진제어장치의 냉각용 인버터를 위한 제동초퍼 회로 설계 및 제어)

  • Cho, Sung-Joon
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.314-315
    • /
    • 2011
  • This paper introduces the design and control method of braking chopper circuit which can supply input power to ventilation inverter of traction control system. The DC input voltage from auxiliary block (static inverter) is normally used as an input of ventilation inverter. It converts DC input to AC output voltage to drive cooling fans for traction control system and traction motors. The electrical braking force is very important for high speed train to guarantee safety even though the train is running in the dead section where the pantograph voltage is not supplied. When the high speed train decelerate speed in dead section, the regenerative energy is dissipated by braking resistor. This paper proposed the braking chopper control method to implement rheostatic braking function and the appropriate chopper circuit for supplying voltage source to ventilation inverter during rheostatic braking mode. The proposed chopper circuit makes it possible for traction control system to regenerate power continuously regardless of the existence of pantograph voltage. The feasibility of proposed braking chopper control and circuit were proven by inertia load test and actual train field test.

  • PDF

Performance Analysis and Experimental Verification of Buck Converter fed DC Series Motor using Hybrid Intelligent Controller with Stability Analysis and Parameter Variations

  • Thangaraju, I.;Muruganandam, M.;Madheswaran, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.518-528
    • /
    • 2015
  • This article presents a closed loop control of DC series motor fed by DC chopper controlled by an PID controller based intelligent control using ANN (Artificial Neural Network). The PID-ANN controller performances are analyzed in both steady state and dynamic operating condition with various set speed and various load torque. Here two different motor parameters are taken for analysis (220V and 110V motor parameters). The static and dynamic performances are taken for comparison with conventional PID controller and existing work. The steady state stability analysis of the system also made using the transfer function model. The equation model is also done to analysis the performances by set speed change and load torque change. The proposed controller have better control over the conventional PID controller and the reported existing work. This system is initially simulated using MATLAB / Simulink and then experimental setup done using P89V51RD2BN microcontroller.

Active-Clamp AC-DC Converter with Direct Power Conversion (직접전력변환 방식을 이용한 능동 클램프 AC-DC 컨버터)

  • Cho, Yong-Won;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.230-237
    • /
    • 2012
  • This paper proposes an active-clamp ac-dc converter with direct power conversion that has a simple structure and achieves high efficiency. The proposed converter is derived by integrating the step-down ac chopper and the output-voltage doubler. The proposed converter provides direct ac-dc conversion and dc output voltage without using any full-bridge diode rectifier. The step-down ac chopper using an active-clamp mechanism serves to clamp the voltage spike across the main switches and provides zero-voltage turn-on switching. The resonant-current path formed by the leakage inductance of the transformer and the resonant capacitor of the output-voltage doubler achieves the zero-current turn-off switching of the output diodes. The operation principle of the converter is analyzed and verified. A 500W prototype is implemented to show the performance of the proposed converter. The prototype provides maximum efficiency of 95.1% at the full load.

An Effective Control Scheme of a Back-to-Back Converter with Shunt-Connected HTS SMES for Frequency Regulation of an Islanded Microgrid

  • Dinh, Minh-Chau;Park, Minwon;Kim, Gyeong-Hun;Yu, In-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1119-1124
    • /
    • 2014
  • High temperature superconducting magnetic energy storage (HTS SMES) is known as an effective solution to significantly decrease the voltage and power fluctuations of grid connected wind power generation system (WPGS). This paper implements an effective control scheme of a back-toback converter with shunt-connected HTS SMES for the frequency regulation of an islanded microgrid. The back-to-back converter is used to connect the WPGS to the grid. A large-scale HTS SMES is linked to the DC side of the back-to-back converter through a two-quadrant DC/DC chopper. An adaptive control strategy is implemented for the back-to-back converter and the two-quadrant DC/DC chopper to improve the efficiency of the whole system. The performance of the proposed control system was evaluated in a test power system using PSCAD/EMTDC. The simulation results clearly show that the back-to-back converter with shunt-connected HTS SMES operates effectively with the proposed control strategy for stabilizing the power system frequency fluctuations.

A Multi-Load Shoring Characteristic Using Novel Buck-Boost Chopper Circuit (새로운 승·강압 초퍼 회로를 이용한 부하 다분할 특성)

  • Suh, Ki-Young;Mun, Sang-Pil;Kwon, Soon-Kurl;Lee, Hyun-Woo;Jung, Sang-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.42-48
    • /
    • 2005
  • A DC-DC converter is being widely used for various household appliances and for industry applications. The DC-CC converter is powered from single battery, and the voltage is varied according to the purpose. In the vehicle, various accessories whose electric power is different are being un4 Thus, plural number of DC-DC converter should be provided, so these situations bring complicated circuits, and accordingly, higher cost. Under such backgrounds, in this paper, we propose a novel buck-boost chopper circuit with simply configuration which can supply to two or more different output loads. The propose chewer circuit can control output voltages by controlling duty ratio by using typically two switching devices, which is composed by single boost-switch and single buck-switch. The output voltage can be controlled widely. A few modified circuits developed from the fundamental circuit are represented including the general multi-load circuit. And all this merits and appropriateness was proved by computer simulation and experience.

Development of Boost Chopper with Built New Renewable Energy in Grid-Connected Distributed Power System (승압 초퍼 기능이 내장된 새로운 태양광 발전용 파워컨디셔너의 개발)

  • Mun, Sang-Pil;Lee, Su-Haeng;Kim, Young-Mun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.361-367
    • /
    • 2014
  • This paper is related to a new solar power conditioner for a built-in step-up chopper function. In the first step-up chopper proposed solar PV power conditioner for mutually connected in series with the input voltage of the bypass diodes are respectively connected to the positive terminal should install the mutual boosting chopper diode connected in series with the boost chopper switching element between the two power supply and at the same time the first and the second was connected to a second diode and a resonance inductor and a snubber capacitor in series with each other. And the common connection point between the bypass diode and the step-up chopper and the step-up chopper diode common connection point of the switching elements of the input voltage was set to the boost inductor for storing energy. In addition, between the step-up chopper and the step-up chopper diode and a switching element of a joint connection point of the first auxiliary diode and the second common connection point of the auxiliary diode was provided, the resonance capacitor. Between the step-up chopper and the step-up chopper diode and a switching element of a joint connection point and the common connection point of the resonance inductor snubber capacitor and connecting the third secondary diode, between two power supply lines is characterized by configuring the DC link capacitor bus lines in parallel. Therefore, it is possible to suppress the switching loss through, DC link bus lines, as well as there could seek miniaturization and weight reduction of the power conditioner itself by using a common capacitor of the non-polar non-polar electrolytic capacitor having a capacitor, the service life of the circuit can be extended and it is possible to greatly reduce the loss can be greatly improve the reliability of the product and the operation of the product itself.