• Title/Summary/Keyword: DC-DC 변환기

Search Result 561, Processing Time 0.026 seconds

DC-DC Boost Converter with Dead-Time Adaptive Control and Power Switching (Dead-Time 적응제어 기능과 Power Switching 기능을 갖는 DC-DC 부스트 변환기)

  • Lee, Joo-young;Yang, Min-jae;Kim, Doo-Hoi;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.361-364
    • /
    • 2013
  • Since the non-overlapping gate driver used in conventional DC-DC boost converters generates fixed dead-times, the converters suffer from the body-diode conduction loss or the charge-sharing loss. A adaptive control method has been proposed to reduce these loses. In this method, however, occurrence of and overlapping time of two power transistors in CCM results in reduction of efficiency. In this paper, to overcome this problem a new adaptive control method in proposed, and a DC-DC boost converter with the proposed adaptive control and power switching has been designed in a 0.35um CMOS process. The designed converter outputs 3.3V from a input voltage of 2.5V. The switching frequency is 500kHz and the maximum power efficiency is 95.3% at a load current 150mA. The designed chip area is $1720um{\times}1280um$.

  • PDF

High Density Power Supply with Flat Transformer (Flat Transformer 적용한 고밀도 전원장치)

  • Ryu M. H.;Baek J. W.;Kim J. H.;Yoo D. W.;Rim G. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.709-712
    • /
    • 2004
  • 본 논문에서는 고밀도 전원 장치에 적합한 플랫 트랜스포머(Flat Transformer)를 사용하여 다양한 출력을 갖는 AC/DC 변환장치의 설계 예를 제시하였다. 기존의 트랜스포머에 비해 플랫 트랜스포머는 다수의 트랜스포머를 병렬로 구성하여 제작하고, 이차 권선이 항상 1턴으로 구성되므로 누설 인덕턴스가 크게 감소하게 되어 고주파 스위칭에 적합한 형태를 가지고 있다. 일차측 AC/DC 변환기는 고조파 규제를 만족시키기 위해 경계 모드 (Boundary Mode)에서 동작하는 역률 보상회로로 구성하여 설계하였으며, 이차측 DC/DC 변환기는 플랫 트랜스포머에 적당한 하프 브리지(Half-Bridge) 컨버터를 적용하였다. 본 논문에서는 500W급 AC/]DC 변환기를 구성하여 다양한 출력을 갖는 전원 장치를 설계/제작하였다.

  • PDF

A Load Emulator for Low-power Embedded Systems and Its Application (저전력 내장형 시스템을 위한 부하의 전력 소모 에뮬레이션 시스템과 응용)

  • Kim, Kwan-Ho;Chang, Nae-Hyuck
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.37-48
    • /
    • 2005
  • The efficiency of power supply circuits such as DC-DC converters and batteries varies on the trend of the power consumption because their efficiencies are not fixed. To analyze the efficiency of power supply circuits, we need the temporal behavior of the power consumption of the loads, which is dependent on the activity factors of the devices during the operation. Since it is not easy to model every detail of those factors, one of the most accurate power consumption analyses of power supply circuits is measurement of a real system, which is expensive and time consuming. In this paper, we introduce an active load emulator for embedded systems which is capable of power measurement, logging, replaying and synthesis. We adopt a pattern recognition technique for data compression in that long-term behaviors of power consumption consist of numbers of repetitions of short-term behaviors, and the number of short-term behaviors is generally limited to a small number. We also devise a heterogeneous structure of active load elements so that low-speed, high-current active load elements and high-speed, low-current active load elements may emulate large amount and fast changing power consumption of digital systems. For the performance evaluation of our load emulator, we demonstrate power measurement and emulation of a hard drive. As an application of our load emulator, it is used for the analysis of a DC-DC converter efficiency and for the verification of a low-power frequency scaling policy for a real-time task.

DC-DC Boost Converter Using Dead Time Controller for Wearable AMOLED Display (데드 타임 제어기를 이용한 웨어러블 AMOLED 디스플레이용 DC-DC 부스트 변환기)

  • Kim, Chan-You;Kim, Tae-Un;Choi, Ho-Yong
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1104-1107
    • /
    • 2019
  • This paper proposes a DC-DC boost converter for wearable AMOLED display using dead time controller to reduce dead time and improve power efficiency. Also the DC-DC boost converter adopts PWM-SPWM (set-time variable pulse width modulation) dual-mode to enhance power efficiency under light load and decrease output voltage ripple. The proposed circuit has been designed using $0.18{\mu}m$ BCDMOS process. Simulation results show that the circuit has power efficiency of 39%~96% and output ripple voltage of 2 mV under load current range of 1 mA~70 mA. The power efficiency of the proposed circuit is up to 2% higher than the previous PWM-SPWM method and up to 8% higher than only PWM method.

Design of DC-DC Converter to Charge and Discharge Lithium Battery Using Isolated Boost Converter and Forward Converter (절연된 부스트 변환기와 포워드 변환기를 이용한 리튬전지 충방전용 직류-직류 변환기의 설계)

  • Kim, Hee-Sun;Chung, Dae-Taek;Hong, Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.441-450
    • /
    • 2010
  • Lithium battery is widely used as the power source of various electronic devices. The formation process which is the repeated charging and discharging process is essential in the production of lithium battery. In this paper, it is proposed and designed the DC-DC converter that can charge and also discharge the lithium battery in one converter. The proposed converter is designed by considering the charge/discharge characteristics of the lithium battery. The converter is operated as a forward converter in charging process and a electrically isolated boost converter in discharging process. Based on the analyses, the number of transformer turns, inductor, capacitor, and switching devices are designed. Finally, the validity of the design for the proposed converter is verified by both simulations and experiments.

A Integrated Circuit Design of DC-DC Converter for Flat Panel Display (플랫 판넬표시장치용 DC-DC 컨버터 집적회로의 설계)

  • Lee, Jun-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.231-238
    • /
    • 2013
  • This paper describes a DC-DC converter IC for Flat Panel Displays. In case of operate LCD devices various type of DC supply voltage is needed. This device can convert DC voltage from 6~14[V] single supply to -5[V], 15[V], 23[V], and 3.3[V] DC supplies. In order to meet current and voltage specification considered different type of DC-DC converter circuits. In this work a negative charge pump DC-DC converter(-5V), a positive charge pump DC-DC converter(15V), a switching Type Boost DC-DC converter(23V) and a buck DC-DC converter(3.3V). And a oscillator, a thermal shut down circuit, level shift circuits, a bandgap reference circuits are designed. This device has been designed in a 0.35[${\mu}m$] triple-well, double poly, double metal 30[V] CMOS process. The designed circuit is simulated and this one chip product could be applicable for flat panel displays.

Design of a DC-DC converter for intra-oral CMOS X-ray image sensors (Intra Oral CMOS X-ray Image Sensor용 DC-DC 변환기 설계)

  • Jang, Ji-Hye;Jin, Li-Yan;Heo, Subg-Kyn;Josonen, Jari Pekka;Kim, Tae-Woo;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2237-2246
    • /
    • 2012
  • A bias circuit required for an oral sensor is manufactured inside the oral sensor chip to reduce its size and cost. The proposed DC-DC converter supplies the required reference and bias currents for their corresponding regulators by using IREF of the reference current generator. Their target voltages of the voltage regulators are regulated by the negative mechanism by generating their reference voltages required for their corresponding regulators. In addition, a constant current IB0/IB1 is supplied by being mirrored by a current mirror ratio and then VREF is generated. It is confirmed by measurements that the average volatge, ${\sigma}$, and $4{\sigma}$ of the designed DC-DC converter for intra oral sensors with a $0.18{\mu}m$ X-ray CMOS process are within their required ranges. And the line-pair pattern image shows a high-resolution characteristic without blurring. Also, a good oral image can be obtained.

Wireless Power Transmission High-gain High-Efficiency DC-AC Converter Using Harmonic Suppression Filter (고조파 억제 필터를 이용한 무선전력전송 고이득 고효율 DC-AC 변환회로)

  • Hwang, Hyun-Wook;Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.2
    • /
    • pp.72-75
    • /
    • 2012
  • In this paper, high-efficiency DC-AC converter is implemented for the wireless power transmission. The DC-AC converter is implemented by combining the oscillator and power amplifier. Because the conversion efficiency of wireless power transmitter is strongly affected by the efficiency of power amplifier, the high-efficiency power amplifier is implemented by using the Class-E amplifier structure. Also, because the output power of oscillator connected to the input stage of power amplifier is low, high-gain two-stages power amplifier using the drive amplifier is implemented to realize the high-output power DC-AC converter. The dual band harmonic suppression filter is implemented to suppress 2nd, 3rd harmonics of 13.56 MHz. The output power and conversion efficiency of DC-AC converter are 40 dBm and 80.2 % at the operation frequency of 13.56 MHz.

Experimental Verification of DC/DC Converter Power Loss Model in Severe Temperature Condition (가혹온도조건에서 DC/DC 변환기 전력손실모델의 실험적 검증)

  • Noh, Myounggyu;Kim, Sunyoung;Park, Young-Woo;Jung, Doo-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.455-461
    • /
    • 2015
  • This paper deals with an experimental verification of a temperature-dependent power loss model of a DC/DC converter in severe temperature conditions. The power loss of a DC/DC converter is obtained by summing the losses by the components constituting the converter including switching elements, diodes, inductors, and capacitors. MIL-STD-810F stipulates that any electronic devices must be operable in the temperature ranging from $-50^{\circ}C$ to $70^{\circ}C$. We summarized the temperature-dependent loss models for the converter components. A SEPIC-type converter is designed and built as a target. Using a constant-temperature chamber, a test rig is set up to measure the power loss of the converter. The experimental results confirm the validity of the loss model within 4.5% error. The model can be useful to predict the efficiency of the converter at the operating temperature, and to provide guidelines in order to improve the efficiency.

A DC-DC Converter Design with Internal Capacitor for TFT-LCD Driver IC (TFT -LCD 구동 IC용 커패시터 내장형 DC-DC 변환기 설계)

  • Lim Gyu-Ho;Kang Hyung-Geun;Lee Jae-Hyung;Sohn Ki-Sung;Cho Ki-Seok;Baek Seung-Myun;Sung Kwan-Young;Li Long-Zhen;Park Mu-Hun;Ha Pan-Bong;Kim Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1266-1274
    • /
    • 2006
  • A non-overlap boosted-clock charge pump(NBCCP) with internal pumping capacitor, an advantageous circuit from a minimizing point of TFT-LCD driver IC module, is proposed in this paper. By using the non-overlap boosted-clock swinging in 2VDC voltage, the number of pumping stages is reduced to half and a back current of pumping charge from charge pumping node to input stage is also prevented compared with conventional cross-coupled charge pump with internal pumping capacitor. As a result, pumping current of the proposed NBCCP circuit is increased more than conventional cross-coupled charge pump, and a layout area is decreased. A proposed DC-DC converter for TFT-LCD driver IC is designed with $0.18{\mu}m$ triple-well CMOS process and a test chip is in the marking.