• Title/Summary/Keyword: DC voltage-current characteristics

Search Result 552, Processing Time 0.026 seconds

A study on the characteristics of DC chopper using a parallel chpacitor (병렬커패시터를 사용한 DC chopper의 특성연구)

  • 김한성
    • 전기의세계
    • /
    • v.31 no.3
    • /
    • pp.226-234
    • /
    • 1982
  • DC choppers are usually used to control the DC motor by varying the average value of DC input voltage to the DC motors. In this paper, a chopper circuit is suggested and reconstructed by replacing the free-wheeling diode with the parallel capacitor in the conventional ones. It is demonstrated that this chopper circuit with capacitor can reduce the ripples of the output voltage and current in contrast to those of the chopper with diode, and it can be controlled the output waveforms smoothly at high power demand.

  • PDF

Electrical Properties of 18[kV] ZnO Surge Arrester Stressed by the Mixed DC and 60[Hz] AC Voltages (직류+60[Hz]교류 중첩전압에 대한 18[kV] ZnO 피뢰기의 전기적 특성)

  • Lee, Su-Bong;Lee, Seung-Ju;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.66-72
    • /
    • 2007
  • This paper describes the characteristics of power loss and leakage currents flowing through new and used 18[kV] zinc oxide(ZnO) surge arrester under the mixed DC and AC voltages. The mixed DC and AC voltage generator of 50[kV] peak was designed and fabricated. The I-V curves of ZnO surge arrester were measured as a function of the voltage ratio K. The I-V curves under the mixed DC and AC voltages lay between the pure DC and AC characteristics, and the cross-over phenomenon in both I-V curves and R-V curves was observed at the low current region. As a result, the increase of DC component in the mixed voltages causes the increase of resistive component of total leakage current of ZnO surge arrester. Also, in the case of same applied voltage, the leakage current flowing through the used ZnO surge arrester was higher than that of the new ZnO surge arrester.

Characteristic of fuel Cell DC-AC Inverter Using New Active Clamping Method (새로운 능동 클램핑방식을 이용한 연료전지용 DC-AC 인버터의 특성)

  • Kim, C.Y.;Cho, M.C.;Mun, S.P.;Kim, Y.J.;Nakaoka, Mutsuo;Kim, H.S.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.337-340
    • /
    • 2007
  • In the dissertation, a power conversion system for fuel cell is composed of a PWM inverter with LC filter in order to convert fuel cell voltage to a single phase 220[V], In addition, new insulated DC-DC converters are proposed in order that fuel cell voltage is boosted to 380[V]. In this paper, it requires smaller components than existing converters, which makes easy control. The proposed DC-DC converter controls output power by the adjustment of phase-shift width using switch S5 and S6 in the secondary switch, which provides 93-97[%] efficiency in the wide range of output voltage. Fuel cell simulator is implemented to show similar output characteristics to actual fuel cell. Appropriate dead time td enables soft switching to the range where the peak value of excitation current in a high frequency transformer is in accordance with current in the primary circuit. Moreover, appropriate setting to serial inductance La reduces communication loss arisen at light-load generator and serge voltage arisen at a secondary switch and serial diode. Finally, TMS320C31 board and EPLD using PWM switching technique to act a single phase full-bridge inverter which is planed to make alternating current suitable for household.

  • PDF

Development of 3.0[kW]class Fuel Cell Power Conversion System (3[kW]급 연료전지용 전력변환장치의 개발)

  • Suh, Ki-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.54-63
    • /
    • 2007
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system. It needs both a DC-DC step-up converter and DC-AC inverter to be used in fuel cell generation system. Therefor, this paper, consists of an isolated DC-DC converter to boost the fuel cell voltage $380[V_{DC}]$ and a PWM inverter with LC filter to convent the DC voltage to single-phase $220[V_{AC}]$. Expressly, a tapped inductor filter with freewheeling diode is newly implemented in the output filter of the proposed high frequency isolated ZVZCS PWM DC-DC converter to suppress circulating current under the wide output voltage regulation range, thus to eliminate the switching and transformer turn-on/off over-short voltage or transient phenomena. Besides the efficiency of 93-97[%]is obtained over the wide output voltage regulation ranges and load variations.

Input-Series-Output-Parallel Connected DC/DC Converter for a Photovoltaic PCS with High Efficiency under a Wide Load Range

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.9-13
    • /
    • 2010
  • This paper proposes an input-series-output-parallel connected ZVS full bridge converter with interleaved control for photovoltaic power conditioning systems (PV PCS). The input-series connection enables a fully modular power-system architecture, where low voltage and standard power modules can be connected in any combination at the input and/or at the output, to realize any given specifications. Further, the input-series connection enables the use of low-voltage MOSFETs that are optimized for a very low RDSON, thus, resulting in lower conduction losses. The system costs decrease due to the reduced current, and the volumes of the output filters due to the interleaving technique. A topology for a photovoltaic (PV) dc/dc converter that can dramatically reduce the power rating and increase the efficiency of a PV system by analyzing the PV module characteristics is proposed. The control scheme, consisting of an output voltage loop, a current loop and input voltage balancing loops, is proposed to achieve input voltage sharing and output current sharing. The total PV system is implemented for a 10-kW PV power conditioning system (PCS). This system has a dc/dc converter with a 3.6-kW power rating. It is only one-third of the total PV PCS power. A 3.6-kW prototype PV dc/dc converter is introduced to experimentally verify the proposed topology. In addition, experimental results show that the proposed topology exhibits good performance.

H-type Structural Boost Three-Level DC-DC Converter with Wide Voltage-Gain Range for Fuel Cell Applications

  • Bi, Huakun;Wang, Ping;Che, Yanbo
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1303-1314
    • /
    • 2018
  • To match the dynamic lower voltage of a fuel cell stack and the required constant higher voltage (400V) of a DC bus, an H-type structural Boost three-level DC-DC converter with a wide voltage-gain range (HS-BTL) is presented in this paper. When compared with the traditional flying-capacitor Boost three-level DC-DC converter, the proposed converter can obtain a higher voltage-gain and does not require a complicate control for the flying-capacitor voltage balance. Moreover, the proposed converter, which can draw a continuous and low-rippled current from an input source, has the advantages of a wide voltage-gain range and low voltage stress for power semiconductors. The operating principle, parameters design and a comparison with other converters are presented and analyzed. Experimental results are also given to verify the aforementioned characteristics and theoretical analysis. The proposed converter is suitable for application of fuel cell systems.

Reliability Evaluation of RF Power Amplifier for Wireless Transmitter

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.154-157
    • /
    • 2008
  • A class-E RF(Radio Frequency) power amplifier for wireless application is designed using standard CMOS technology. To drive the class-E power amplifier, a class-F RF power amplifier is used and the reliability characteristics are studied with a class-E load network. The reliability characteristic is improved when a finite-DC feed inductor is used instead of an RF choke with the load. After one year of operating, when the load is an RF choke the output current and voltage of the power amplifier decrease about 17% compared to initial values. But when the load is a finite DC-feed inductor the output current and voltage decrease 9.7%. The S-parameter such as input reflection coefficient(S11) and the forward transmission scattering parameter(S21) is simulated with the stress time. In a finite DC-feed inductor the characteristics of S-parameter are changed slightly compared to an RF-choke inductor. From the simulation results, the class-E power amplifier with a finite DC-feed inductor shows superior reliability characteristics compared to power amplifier using an RF choke.

Optimal Control of a Three-Phase Voltage-Source PWM Converter with an Expanded Operation Region (확장된 동작 영역을 갖는 3상 전압원 PWM 컨버터의 최적 제어)

  • 민동기;안성찬;현동석;최종률
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.156-164
    • /
    • 1998
  • The operation regions of a three-phase(3Ø) voltage-source(VS) PWM converter are classified in the current vector plane of the synchronous reference frame and their characteristics are explained. In the the power-factor decreasing region, the current control with unity power-factor can not give satisfactory performance to the given load because of the distortion of input current and the ripples and the steady-state errors in DC link voltage. In this paper, the derivation of the optimal current vector is proposed to solve these problems. With this, the input current can be controlled sinusoidally with available maximum power factor and the DC link voltage be the given load, resulting the expansion of the operation region of the 3Ø VS PWM converter. The validity of the proposed control method is proved by the experimental results.

single-phase PFC rectifier circuit consonant to Input voltage waveform detection (입력전압 파형 검출만으로 구성된 단상 PFC 정류회로)

  • Jeong, S.H.;Lee, H.W.;Chun, J.H.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.12-15
    • /
    • 2002
  • This propose a simple DC voltage sensor less single phase PFC(Power Factor Correction Circuit) converter by detecting a AC current sensors are not required to construct the control system. The DC voltage is directly controlled by the command input signal Kd($V_o/V_a$)for the boost chopper circuit. The DC voltage regulation is small because of the feed forward control for the AC line voltage VS and no dependence of the circuit parameters. The sinusoidal current waveform in phase with the AC input voltage can be obtained. These characteristics are confirmed by some experiment results.

  • PDF

The Steady State Characteristics of the Push-Pull Current-fed DC-to-DC Converter with Multiple Outputs (다출력 전류환류형 DC-CD 컨버터의 정상특성)

  • 김희준
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.5
    • /
    • pp.536-541
    • /
    • 1988
  • The push-pull current-fed DC-to-DC converter has only one energy storage reactor in series with the input for any number of outputs. It is considered that this property of the converter has considerable advantages over other multiple-output circuits. The steady state characteristics of the converter with two outputs is analyzed. It is known that the voltage difference between the two outputs appears by existing the 2nd winding resistance of transformer and there is a region of the duty ratio in which the voltage difference of the converter is smaller than that of the forward converter.

  • PDF