• 제목/요약/키워드: DC transmission

검색결과 477건 처리시간 0.039초

Effects of Electric Current on Flowering in Pharbitis and Floral Stimulus activity in the Phloem Exudate of Cotyledons

  • Jueson Maeng
    • Journal of Plant Biology
    • /
    • 제37권2호
    • /
    • pp.159-166
    • /
    • 1994
  • Direct current (DC) applied to cotyledons during a 16 h inductive dark period inhibited the flowering in the short-day plant, Pharbitis nil Choisy cv. Violet. The inhibitory effect of DC was more profound when the current flowed from roots to cotyledons, showing its polarity-dependent action. The second half on the inductive dark period was more sensitive to DC stimulus. The flowering was significantly depressed only when DC stimuli were applied to the translocation path of the floral stimulus from the induced cotyledon to the apex, suggesting that the transport of floral stimulus was damaged by the DC treatment. The vegetative apex culture bioassay system showed that a significant level of the floral stimulus activity existed in the phloem exudate from the cotyledons which would fail to form their own floral buds. These results strongly support the hypothesis that DC partially impede, at least temporarily, the transmission path of the floral stimulus from florally-induced cotyledon to the apex, rather than depressing in situ synthesis of the floral stimulus.

  • PDF

FEM을 이용한 초전도 직류 케이블의 손실 특성 분석 (Loss characteristics analysis of HTS DC cable using FEM)

  • 김성규;김석호;김진근;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.822-823
    • /
    • 2011
  • The authors analyzed harmonic current based loss of a high temperature superconducting (HTS) DC model cable. The loss in HTS DC cable is generated due to the variation of magnetic field caused by harmonic current in a HVDC transmission system. The authors designed and fabricated two meters of HTS DC model cable for verification of real loss characteristic. In this paper, the loss characteristics caused by harmonic current in the HTS DC model cable are analyzed using commercial finite element method software package. The loss of the HTS DC cable is much less than the loss of the HTS AC cable but the loss should be considered to decide a proper capacity of cooling system.

  • PDF

축소모델을 이용한 Hybrid 송전선로의 도체구성별 지표면 전계강도 특성 연구 (A Study for Electric Field Intensity of AC/DC Hybrid Transmission Line using Reduced Scale Model)

  • 임재섭;신구용;김영홍;최인혁;이동일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.503-504
    • /
    • 2011
  • 주파수가 다른 계통을 연계하거나, 장거리 선로 운전시 손실이 낮은 HVDC 송전은 환경문제로 인한 민원으로 새로운 선로건설을 위한 부지확보가 전 세계적으로 어려운 실정이다. 이 문제를 해결할 수 있는 방안으로 기존의 AC선로에 DC를 적용하여 동일철탑에 AC와 DC 선로를 같이 설치하는 하이브리드(Hybird) 선로가 제시되었다. 그러나 AC와 DC가 공존한 상태에서의 전기환경기준이 제시되지 못하고 있는 실정이다. 따라서 본 논문에서는 국내에서 운용중인 345kV 2회선 철탑에 DC선로를 적용한 하이브리드 선로의 축소모델을 제작하였고, DC선로의 도체 구성별 하이브리드 선로의 이온류 특성을 시험하였다.

  • PDF

하이브리드 혼합송전계통에서 고조파분석에 의한 DC 케이블 적정 배열 선정 (Proper Arrangement Selection of Underground DC Power Cable through Harmonics Analysis in Hybrid Combined Transmission System)

  • 손용대;고광만;채직병;이재명;이종범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.367-368
    • /
    • 2015
  • 최근에 인도와 유럽을 중심으로 기존의 AC 송전계통 중 일부를 DC 송전계통으로 대체하는 하이브리드형 송전방식에 대한 연구가 진행중이다. 따라서 본 연구는 기존에 연구되고 있는 하이브리드형 가공송전계통을 기반으로 지중송전계통을 포함한 하이브리드형 혼합송전계통이 향후 머지않아 국내에서 계획 및 건설될 것을 대비한 초기 연구로서 진행하였다. 본 논문의 관점은 하이브리드 혼합송전계통 중 지중송전계통구간에서 DC 선로가 AC선로로부터 얼마나 고조파 전압 및 전류 측면에서 영향을 받는가를 평가하고, 이를 근거로 DC 케이블의 배열을 선정하고자 한다. 또한 DC 케이블 배열 선정을 위해 가능성이 있는 여러 개의 CASE별로 구분하고, 가장 타당한다고 평가되는 배열을 제안하고자한다. 본 연구에서 계통 모델링 및 해석은 EMTP를 이용하였다.

  • PDF

Investigating Buck DC-DC Converter Operation in Different Operational Modes and Obtaining the Minimum Output Voltage Ripple Considering Filter Size

  • Babaei, Ebrahim;Mahmoodieh, Mir Esmaeel Seyed;Sabah, Mehran
    • Journal of Power Electronics
    • /
    • 제11권6호
    • /
    • pp.793-800
    • /
    • 2011
  • This paper investigates the operational modes of buck dc-dc converters and their energy transmission methods. The operational modes of such converters are classified in two types, discontinuous conduction mode (DCM) and continuous conduction mode (CCM). In this paper, the critical inductance relation of DCM and CCM is determined. The equations of the output voltage ripple (OVR) for each mode are obtained for a specific input voltage and load resistance range. The maximum output voltage ripple (MOVR) is also obtained for each mode. The filter size is decreased and the minimum required inductance value is calculated to guarantee the minimization of the MOVR. The experimental and simulation results in PSCAD/EMTDC prove the correctness of the presented theoretical concepts.

A Study on the Application of DC HTS cable systems to enhance power transfer limits of a grid-connected offshore wind farm

  • Hur, Jin
    • 조명전기설비학회논문지
    • /
    • 제29권2호
    • /
    • pp.97-103
    • /
    • 2015
  • This paper introduces two on-going projects for DC high temperature superconducting (HTS) cable systems in South Korea. This study proposes the application of DC HTS cable systems to enhance power transfer limits of a grid-connected offshore wind farm. In order to develop the superconducting DC transmission system model based on HTS power cables, the maximum transfer limits from offshore wind farm are estimated and the system marginal price (SMP) calculated through a Two-Step Power Transfer (TSPT) model based on PV analysis and DC-optimal power flow. The proposed TSPT model will be applied to 2022 KEPCO systems with offshore wind farms.

새로운 가상 임피던스 선정기법 기반의 적응 드룹을 이용한 직류배전용 AC/DC 컨버터의 병렬운전 (Novel Adaptive Virtual Impedance-based Droop Control for Parallel Operation of AC/DC Converter for DC Distribution)

  • 이윤성;강경민;최봉연;김미나;이훈;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2020년도 전력전자학술대회
    • /
    • pp.328-329
    • /
    • 2020
  • The AC/DC converter, which connects the AC grid to the DC grid in the microgrid, is a critical component in power sharing and stable operation. Sometimes the AC/DC converters are connected in parallel to increase the transmission and reception capacity. When connected in parallel, circulating current is generated due to line impedance difference or sensor error. As a result of circulating current, there is deterioration and loss in particular PCS(Power Conversion System). In this paper, we propose droop control with novel adaptive virtual impedance for reducing circulating current. Feasibility of proposed algorithm is verified by PowerSIM simulation.

  • PDF

DC 전압이 유입변압기 절연시스템에 미치는 영향에 관한 연구 (Study on the effect of DC voltage in oil-immersed transformer insulation system)

  • 장효재;김용한;석복렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1552-1553
    • /
    • 2011
  • The HVDC transformer which is one of the main equipments for HVDC(High Voltage Direct Current) electric power transmission systems is exposed to not only AC voltage but also the inflowing DC voltage which comes from the DC-AC converter systems. Therefore, the HVDC transformer insulation system is required to withstand the electric field stress under AC, DC and DC polarity reversal conditions. However the electric field distributions under those conditions are different because the AC electric field and DC electric field are governed by permittivity and conductivity, respectively. In this study, the changes of electric potential and electric field of conventional AC transformer insulation system under DC polarity reversal test condition were analyzed by FEM(Finite Element Method). The DC electric field stress was concentrated in the solid insulators while the AC electric field stress was concentrated in the mineral oil. In addition, the electric stress under that condition which is affected by the surface charge accumulation at the interfaces between insulators was evaluated. The stress in some parts could be higher than that of AC and DC condition, during polarity reversal test. The result of this study would be helpful for the HVDC transformer insulation system design.

  • PDF

초고압 직류 가공송전 후보 도체방식의 이온류 환경특성 코로나 케이지 모의시험 (Corona Cage Simulation on Environmental Characteristics Caused by the Ion flow of Candidated Conductor Bundles for HVDC Overhead Transmission)

  • 주윤노;양광호;이동일;신구용
    • 전기학회논문지
    • /
    • 제56권10호
    • /
    • pp.1791-1795
    • /
    • 2007
  • Small ions generated at conductor corona sources remain in the atmosphere until they recombine with ions of opposite polarity, attach to aerosols, or make contact with an object. Ion current density is major factor to design conductor configuration of DC overhead transmission line. Several techniques have been used to measure the ion current of HVDC overhead transmission line. In this study, the ion current density was measured by a plate electrode made of a metal flat board at DC corona cage. The sensitivity of the plate electrode is $0.156uA/m^2/V$. To obtain an useful database on corona discharge, it is necessary to do corona test on several kinds of conductor bundles. Therefore, a number of experiments were conducted on several kinds of conductor bundles. To reliably analyze ion effects, corona cage test data were obtained over a long period of time under various weather conditions and expressed as a statistical distribution. Ion current density distribution in foul weather shows a significant increase in levels over the corresponding fair weather. Based on this results, we evaluated the environmental characteristic caused by ion flow of three candidated conductor bundles.

High-Power-Density Power Conversion Systems for HVDC-Connected Offshore Wind Farms

  • Parastar, Amir;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.737-745
    • /
    • 2013
  • Offshore wind farms are rapidly growing owing to their comparatively more stable wind conditions than onshore and land-based wind farms. The power capacity of offshore wind turbines has been increased to 5MW in order to capture a larger amount of wind energy, which results in an increase of each component's size. Furthermore, the weight of the marine turbine components installed in the nacelle directly influences the total mechanical design, as well as the operation and maintenance (O&M) costs. A reduction in the weight of the nacelle allows for cost-effective tower and foundation structures. On the other hand, longer transmission distances from an offshore wind turbine to the load leads to higher energy losses. In this regard, DC transmission is more useful than AC transmission in terms of efficiency because no reactive power is generated/consumed by DC transmission cables. This paper describes some of the challenges and difficulties faced in designing high-power-density power conversion systems (HPDPCSs) for offshore wind turbines. A new approach for high gain/high voltage systems is introduced using transformerless power conversion technologies. Finally, the proposed converter is evaluated in terms of step-up conversion ratio, device number, modulation, and costs.