• Title/Summary/Keyword: DC traction

Search Result 156, Processing Time 0.029 seconds

Measurement and Analysis of Electromagnetic field for DC electric railway train (직류철도차량에 대한 자계측정 및 분석)

  • Jang, Dong-Uk;Kim, Min-Cheol;Lee, Chang-Mu;Han, Moon-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1637-1639
    • /
    • 2005
  • The measurement of magnetic field is performed about DC and AC magnetic field in test track of depot. The test point is cap, on the converter/inverter box, on the traction motor, on the APSE and on the line filter, the height of measurement is bottom and 50 cm height. In case of AC magnetic field, the selected specific frequency is measured on the converter/inverter box. The AC magnetic field is checked and analysis through RS-232C and notebook PC. The DC magnetic field is measured by using the Hall Probe, test result is saved and analysis by PXI system. On the line filter, the maximum value is 1.4 mT in case of DC magnetic field and 0.044 mT in case of AC magnetic field at 50 Hz.

  • PDF

A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter (위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구)

  • Cho, Han-Jin;Lee, Won-Cheol;Lee, Sang-Seok;Kim, Tae-Hwan;Won, Chung-Yuen
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.623-628
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation(PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought most desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

Optimal Design of a Follow Current Disconnector for DC Arresters in Traction Vehicles

  • Wang, Guoming;Kim, Sun-Jae;Park, Seo-Jun;Kil, Gyung-Suk;Ji, Hong-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.289-292
    • /
    • 2016
  • This paper dealt with the optimal design of a follow current disconnector for DC arresters used in electric traction vehicles. The disconnector separates the ground lead from an arrester to prevent a line-to-ground fault of an aged arrester and should not affect the operation and function such as the reference and the clamping voltage of the connected arrester. The designed disconnector is composed of a resistor, a spark gap, and a cartridge. The results showed that the sparkover voltage increased with the gap distance whereas the reference voltage was almost the same as that without the disconnector. The sparkover voltage was 3.95 kV when the gap distance was 0.5 mm. Regardless of the gap distance, the reference and the clamping voltage of the assembled disconnector with an arrester were measured to be the same as those of the arrester alone.

Optimized Coupling Factor for Minimizing Ripple Current of Coupled Inductor under Variable Duty in Rapid Traction Battery Charger

  • Kang, Taewon;Chae, Beomseok;Kang, Tahyun;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.335-336
    • /
    • 2014
  • This paper investigates the design of coupled inductor for minimum inductor current ripple in rapid traction battery charger systems. Based on the general circuit model of coupled inductor together with the operating principles of dc-dc converter, the relationship between the ripple size of inductor current and the coupling factor is derived under the different duty ratio. The optimal coupling factor which corresponds to a minimum inductor ripple current becomes -1, i.e. a complete inverse coupling without leakage inductance, as the steady-state duty ratio operating point approaches 0.5. In an opposite manner, the optimal coupling factor value of zero, i.e. zero mutual inductance, is required when the steady-state duty ratio operating point approaches either zero or one. Coupled inductors having optimal coupling factor can minimize the ripple current of inductor and battery current resulting in a reliable and efficient operation of battery chargers.

  • PDF

A Study on the Design of Controller for Speed Control of the Induction Motor in the Train Propulsion System-1 (열차추진시스템에서 유도전동기의 속도제어를 위한 제어기 설계에 대한 연구-1)

  • Lee, Jung-Ho;Kim, Min-Seok;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.173-178
    • /
    • 2010
  • Electric railroad systems consist of supply system of electric power and electric locomotive. The electric locomotive is adapted to high speed driving and mass transportation due to obtaining high traction force. The electric locomotive is operated by motor blocks and traction motors. Train speed is controlled by suppling power from motor blocks to traction motors according to reference speed. Speed control of the electric locomotive is efficient by spending minimum energy between motor blocks and traction motors. Recently, induction motors have been used than DC and synchronized motors as traction motors. Speed control of induction motors are used by vector control techniques. In this paper, speed of the induction motor is controlled by using the vector control technique. Control system model is presented by using Simulink. Pulse is controlled by PI and hysteresis controller. IGBT inverter is used for real-time control and system performance is demonstrated by simulating the induction motor which has 210[kW] on the output power.

Determination of Rectifier Current Rating for DC Traction Power Substation (DC 전기철도변전소의 정류기용량산정)

  • Chung, S.G.;Lee, B.S.;Jeong, R.K.;Park, S.H.;Lee, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1229-1232
    • /
    • 2001
  • DC 전기철도 변전소의 정류기 용량선정은 온도상승 제한에 따른 전류정격 결정을 뜻한다. 본 논문에서는 온도등가전력의 개념을 도입하여 정류기의 rms 전류용량을 결정하는 이론적 방법을 제시한다. 또한 기존의 수계산방법과 컴퓨터 시뮬레이션 방법의 비교 검토를 통하여 개선점을 제시하였다.

  • PDF

A Study on Harmonic Reduction in Inverters for DC Power Regeneration (직류전력 회생용 인버터의 고조파 저감에 관한 연구)

  • 김명수;윤인식;박영진;윤덕용;홍순찬
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.464-468
    • /
    • 1999
  • This paper deals with the harmonic reduction technique in square-wave inverters which can regenerate the dc power from dc bus line to ac bus line in substations for traction systems. To reduce the harmonics, two 6-pulse inverters are used for 12-pulse operation and zigzag-connected output transformers for eliminating the harmonics of 6(2m-1)$\pm$1 orders. And an ac filter is furnished at output side. In spite of the square-wave three-phase inverters, computer simulations show that the THDs of the output voltage and current are 2.55% and 0.554%, respectively.

  • PDF

A Study on Design of Optimal Location and Capacity of DC Substation for Mass Transit System (전철용 직류변전소의 최적 위치 및 용량 설계에 관한 연구)

  • Kim, J.K.;Lee, S.D.;Baek, B.S.;Lee, H.D.;Lee, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.398-401
    • /
    • 2000
  • This paper describes the design of optimal location and capacity of DC substation for Mass Transit System. Three factors are considered for the design i.e. substation arrangements, line configuration and substation power capacity. In this study, we considered all of them for capacity calculation of power supply system for MTS. At first, DC-fed-traction system is introduced on an outline, a characteristics of train and fed network, and design method of substation arrangements. Optimal design procedures are described, and program for capacity calculation of the system is presented. In addition, the computer simulated results are compared with the conventional simple calculation method.

  • PDF

A Control Technique for the Rail Potential Limit Device in DC Feeding System (직류급전계통에서 레일전위상승제한장치의 동작제어기법)

  • Min, Myung-Hwan;Jung, Ho-Sung;Park, Young;Chang, Sang-Hoon;Shin, Myong-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.485-490
    • /
    • 2012
  • Nowadays, in metropolitan railroad, DC feeding system is being generally applied. In order to reduce damage of electro-chemical corrosion caused by stray current and leakage current, in DC feeding system, rail is used as negative-polarity return conductor for traction load current. However, it has problem of rail potential increase and there are no adequate measures to prevent it in domestic. The rise of rail potential leads to damage for human and equipments. To solve the problems, this paper presents fundamental theory and related standards about rail potential increase. And then, we analyzed field testing data and simulated a variety of operations by using PSCAD/EMTDC as an analysis program of power system. In addition, this paper suggests rail potential limit device and addresses how to the device. To verify the effect, simulation of DC feeding system before and after the application of the device is carried out in various cases.

A Study on the Power Factor Improvement of DC Power Regenerating Systems Using SVPWM (SVPWM을 이용한 직류전력 회생시스템의 역률개선에 관한 연구)

  • Ko, Young-Min;Chae, Soo-Yong;Seo, Young-Min;Jeong, Dae-Taek;Bae, Young-Wook;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.196-198
    • /
    • 2007
  • In the substations for traction systems and the large-scale discharging system of secondary batteries, the voltage of DC bus line goes up by the regenerated energy and the energy is usually wasted in resistor for system stability. This paper proposes the DC power regenerating system using a three phase PWM inverter. The proposed system can regenerate the excessive DC power from DC bus line to AC supply and control the power factor of AC supply to unity. To implement unity power factor, the magnitude of the inverter output voltage should be higher than that of AC supply and therefore SVPWM technique is adopted. Computer simulations are carried out to verify the validity of the proposed system.

  • PDF