• Title/Summary/Keyword: DC sputtered

Search Result 121, Processing Time 0.026 seconds

A Comparative Study of CrN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Sputtering for a Polymer Electrolyte Membrane Fuel Cell (PEMFC) Metallic Bipolar Plate (DC 스퍼터법과 비대칭 양극성 펄스 스퍼터법으로 제작된 고분자 전해질 연료전지 금속분리판용 CrN 코팅막의 특성 연구)

  • Park, Sang-Won;Chun, Sung-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.390-395
    • /
    • 2013
  • Nanocrystalline CrN films were deposited on Si (100) substrates by means of asymmetric pulsed DC reactive magnetron sputtering. We investigated the growth behavior, corrosion resistance and mechanical properties of CrN films with a change in the duty cycle and pulse frequency. The grain size of the CrN films decreased from 25.4 nm to 11.2 nm upon a decrease in the duty cycle. The corrosion potentials for the CrN films by DC sputtering was approximately - 0.6 V, and it increased to - 0.3 V in the CrN films which underwent pulsed sputtering. The nanoindentation hardness of the CrN films also increased with a decrease in the duty cycle. This enhancement of the corrosion resistance and mechanical properties of pulsed sputtered CrN films could be attributed to the densification and surface smoothness of the microstructure of the films.

A Study on the Dependency of Pulsed-DC Sputtered Aluminum-doped Zinc Oxide Thin Films on the Reverse Pulse Time (Pulsed-DC 스퍼터링에서 Reverse Pulse Time에 따른 AZO 박막의 특성 변화에 관한 연구)

  • Ryu, Hyungseok;Zhao, Zhenqian;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.32-36
    • /
    • 2018
  • For various oxygen($O_2$) to argon(Ar) gas ratio, aluminum-doped zinc oxide(AZO) films were deposited for 3 min at different duty ratio by changing reverse pulse times. As the duty ratio increased, the thickness of the AZO film decreased and the sheet resistance increased. It can be concluded that When sputtering AZO Thin film, oxygen interfered with sputtering. When the reverse time was increased, the thickness of AZO was proportional to the real sputtering time and decreased. From the optical transmittance and sheet resistance, it was possible to obtain a higher figure of merits of AZO at a lower reverse pulse time. Even at the short reversed pulse time, it can be concluded that the accumulated charges on the AZO target are completely cleared. At a lower reverse pulse time, pulsed-DC sputtering of AZO is expected to be used instead of DC sputtering in the deposition of transparent conductive oxide(TCO) films without any degradation in thickness and structural/electrical characteristics.

Effects of Post-Annealing on Crystallization and Electrical Behaviors of ITO Thin Films Sputtered on PES Substrates (PES 필름상에 스퍼터링한 ITO 박막의 열처리에 따른 결정화 거동 및 전기적 특성 변화)

  • So, Byung-Soo;Kim, Young-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.185-192
    • /
    • 2006
  • The effects of annealing on structural and electrical properties of ITO/PES (Indium Tin Oxide/Polyethersulfone) films was investigated. Amorphous ITO thin films were grown on plastic substrates, PES using low temperature DC magnetron sputtering. Various post annealing techniques were attempted to research variations of microstructure and electrical properties: i) conventional thermal annealing, ii) excimer laser annealing, iii) UV irradiation. The electrical properties were obtained using Hall effect measurements and DC 4-point resistance measurement. The microstructural features were characterized by FESEM, XRD, Raman spectroscopy in terms of morphology and crystallinity. Optimized UV treatment exhibits the enhanced conductivity and crystallinity, compared to those of conventional thermal annealing.

A Study on the Relationships between Substrate Bias Potential and Ion Energy Distributions (이온 플레이팅에서 기판 BIAS 전위와 이온 에너지 분포와의 상관관계 연구)

  • Sung, Y.M.;Shin, J.H.;Son, J.B.;Cho, J.S.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.472-474
    • /
    • 1995
  • A Sputter ion Plating(SIP) system with a r.f. coil electrode and the Facing Target Sputter(FTS) source was designed for high-quality thin film formation. The rf discharge was combined with DC facing target sputtering in order to enhance ionization degree of a sputtered atoms. The energy of ions incident on the substrate depended on the health potential of DC biased substrate. The mean impact ion energy increased with negative bias voltage and rf power. The adhesive force of the TiN film formed was in the range of 30$\sim$50N, and markedly influenced by substrate bias voltage.

  • PDF

Improvement of haze ratio of DC-sputtered ZnO:Al thin films through HF vapor texturing

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.319.1-319.1
    • /
    • 2016
  • Recently, the Al-doped ZnO (ZnO:Al) films are intensively used in thin film a-Si solar cell applications due to their high transmittance and good conductivity. The textured ZnO:Al films are used to enhance the light trapping in thin film solar cells. The wet etch process is used to texture ZnO:Al films by dipping in diluted acidic solutions like HCl or HF. During that process the glass substrate could be damaged by the acidic solution and it may be difficult to apply it for the inline mass production process since it has to be done outside the chamber. In this paper we report a new technique to control the surface morphology of RF-sputtered ZnO:Al films. The ZnO:Al films are textured with vaporized HF formed by the mixture of HF and H2SiO3 solution. Even though the surface of textured ZnO:Al films by vapor etching process showed smaller and sharper surface structures compared to that of the films textured by wet etching, the haze value was dramatically improved. We achieved the high haze value of 78% at the wavelength of 540 nm by increasing etching time and HF concentration. The haze value of about 58% was achieved at the wavelength of 800 nm when vapor texturing was used. The ZnO:Al film texture by HCl had haze ratio of about 9.5 % at 800 nm and less than 40 % at 540 nm. In addition to low haze ratio, the texturing by HCl was very difficult to control etching and to keep reproducibility due to its very fast etching speed.

  • PDF

TEM Analysis of Interfaces between Cr Film Sputtered with RE Bias and Photosensitive Polyimide (RE 바이어스 스퍼터링한 Cr 박막과 감광성 폴리이미드 사이의 계면 TEM 분석)

  • 조성수;김영호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.39-47
    • /
    • 2003
  • Cr thin films were deposited on photosensitive polyimide substrates by RF bias sputtering and DC sputtering and the interfaces between Cr thin film and polyimide were observed using TEM. When the polyimide surface was in-situ RF plasma cleaned at the RF power density of 0.13-2.12 $W/cm^2$, increasing of RF power density changed the morphology of polyimide surfaces from round dig to sharp shape, and surface roughness increased by anisotropic etching. The intermixed layer-like interfaces between Cr and polyimide were observed in the RF bias sputtered specimens. This interface seems to be formed due to the RF cleaning effect; the polyimide surface was RF plasma cleaned while RF power was increased to the setting point before Cr deposition.

  • PDF

Characteristics of Hillock Formation in the Al-1%Si Film by the Effect of Ion Implantation and Substrate Temperature (이온 주입과 기판 온도 효과에 의한 Al-1%Si 박막의 Hillock 형성 특성)

  • Choi, Chang-Auk;Lee, Yong-Bong;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • As packing density in integrated circuits increases, multilevel metallization process has been widely used. But hillock formed in the bottom layers of aluminum are well known to make interlayer short in multilevel metallization. In this study, the effects of ion implantation to the metal film and deposition temperature on the hillock formation were investigated. The Al-1%Si thin film of $1{\mu}m$ thickness was DC sputtered with substrate ($SiO_2/Si$) temperature of $20^{\circ}C$, $200^{\circ}C$, and $400^{\circ}C$, respectively. Ar ions ($1{\times}10^{15}cm^{-2}$: 150 keV) and B ions ($1{\times}10^{15}cm^{-2}$, 30 keV, 150 keV) were implanted to the Al-Si thin film. The deposited films were evaluated by SEM, surface profiler and resistance measuring system. As a results, Ar implanting to Al-Si film is very effective to reduce hillock size in the metal deposition temperature below than $200^{\circ}C$, and B implanting to an Al-Si film is effective to reduce hillock density in the high temperature deposition conditions around $400^{\circ}C$. Line width less than $3{\mu}m$ was free of hillock after alloying.

A Study on FTO-less Dye Sensitized Solar Cell with Ti Deposited Glass (티타늄이 증착된 유리를 사용한 FTO-less 염료감응형 태양전지에 관한 연구)

  • Park, Songyi;Seo, Hyunwoong;Son, Min-Kyu;Kim, Soo-Kyoung;Hong, Na-Yeong;Song, Jeong-Yun;Prabakar, Kandasamy;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.208-212
    • /
    • 2013
  • Dye-sensitized solar cells (DSCs) have taken much attention due to their low cost and easy fabrication method compare to silicon solar cells. But research on cost effective DSC is prerequisite for commercialization. Fluorine doped tin oxide (FTO) which have been commonly used for electrode substrate as electron collector occupied most percentage of manufacturing cost. Therefore we studied FTO-less DSC using sputtered Ti deposited glass as photoelectrode instead of FTO to reduce manufacturing cost. Ti films sputtered on the glass for different time, 5 to 20 minutes with decreasing sheet resistance as deposition time increases. A light source illuminated to counter electrode in order to overcome opaque Ti films. The efficiency of DSC (Ti20) made Ti sputtered glass for 20 min as photoelectrode was 5.87%. There are no significant difference with conventional cell despite lower manufacturing cost.

Stability of Sputtered Hf-Silicate Films in Poly Si/Hf-Silicate Gate Stack Under the Chemical Vapor Deposition of Poly Si and by Annealing

  • Kang, Sung-Kwan;Sinclair, Robert;Ko, Dae-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.637-641
    • /
    • 2004
  • We investigated the effects of SiH$_4$ gas on the surface of Hf-silicate films during the deposition of polycrystalline (poly) Si films and the thermal stability of sputtered Hf-silicate films in poly Si/Hf-silicate structure by using High Resolution Transmission Electron Microscopy (HR-TEM) and X-ray Photoelectron Spectroscopy (XPS). Hf-silicate films were deposited by using DC-mag-netron sputtering with Hf target and Si target and poly Si films were deposited at 600$^{\circ}C$ by using Low Pressure Chemical Vapor Deposition (LPCVD) with SiH$_4$ gas. After poly Si film deposition at 600$^{\circ}C$, Hf silicide layer was observed between poly Si and Hf-silicate films due to the reaction between active SiH$_4$ gas and Hf-silicate films. After annealing at 900$^{\circ}C$, Hf silicide, formed during the deposition of poly Si, changed to Hf-silicate and the phase separation of the silicate was not observed. In addition, the Hf-silicate films remain amorphous phase.

Dielectric Characteristics of $Al_2O_3$ Thin Films Deposited by Reactive Sputtering

  • Park, Jae-Hoon;Park, Joo-Dong;Oh, Tae-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.100-100
    • /
    • 2000
  • Aluminium oxide (Al2O3) films have been investigated for many applications such as insulating materials, hard coatings, and diffusion barriers due to their attractive electrical and mechanical properties. In recent years, application of Al2O3 films for dielectric materials in integrated circuits as gates and capacitors has attracted much attention. Various deposition techniques such as sol-gel, metalorganic decomposition (MOD), sputtering, evaporation, metalorganic chemical vapor deposition (MOCVD), and pulsed laser ablation have been used to fabricate Al2O3 thin films. Among these techniques, reactive sputtering has been widely used due to its high deposition rate and easy control of film composition. It has been also reported that the sputtered Al2O3 films exhibit superior chemical stability and mechanical strength compared to the films fabricated by other processes. In this study, Al2O3 thin films were deposited on Pt/Ti/SiO/Si2 and Si substrates by DC reactive sputtering at room temperature with variation of the Ar/O2 ratio in sputtering ambient. Crystalline phase of the reactively sputtered films was characterized using X-ray diffractometry and the surface morphology of the films was observed with Scanning election microscopy. Effects of Th Ar/O2 ratio characteristics of Al2O3 films were investigated with emphasis on the thickness dependence of the dielectric properties. Correlation between the dielectric properties and the microstructure was also studied

  • PDF