• Title/Summary/Keyword: DC resistivity

Search Result 362, Processing Time 0.017 seconds

The Effect of Residual H2Pressure on Gallium-doped ZnO Films Deposited by Magnetron Sputtering (마그네트론 스퍼터링에 의해 제작한 Gallium-doped ZnO 박막에 있어서 잔류 H2O 분압의 영향)

  • Song, Pung-Keun;Kwon, Young-Jun;Cha, Jae-Min;Lee, Byung-Chul;Ryu, Bong-Ki;Kim, Kwang-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.928-934
    • /
    • 2002
  • Gallium doped Zinc Oxide(GZO) films were deposited by dc magnetron sputtering using a GZO ceramic target at various conditions such as substrate temperature (RT, 400), residual water pressure ($P_{H_2O}$; 1.61${\times}10^{-4}∼2.2{\times}10^{-3}$ Pa), introduction of $H_2$ gas (8.5%) and different magnetic field strengths(250, 1000G). GZO films deposited without substrate heating showed clear degradation in film crystallinity and electrical properties with increasing $P_{H_2O}$. The resistivity increased from 3.0${\times}10^{-3}$ to 3.1${\times}10^{-2}{\Omega}㎝$ and the grain size of the films decreased from 24 to 3 nm when PH2O was increased from 1.61${\times}10^{-4}$ to 2.2${\times}10^{-3}$ Pa. However, degradation in electrical properties with increasing $P_{H_2O}$ was not observed for the films deposited with introduction of 8.5% $H_2$. When magnetic field strength of the cathode increased from 250G to 1000G, crystallinity and electrical properties of GZO films improved remarkably about all the $P_{H_2O}$. This result could be attributed to the decrease in film damage caused by the decrease in plasma impedance.

Application of HWAW Method to Detect Underground Anomaly in Shallow Depth (지표 근처 지중 이상체 파악을 위한 HWAW 기법의 적용)

  • Bang, Eun-Seok;Kim, Gyeong-Seob;Son, Jeong-Sul;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1C
    • /
    • pp.11-20
    • /
    • 2009
  • A new alternative method based on HWAW method to detect underground anomaly was introduced. The location of underground anomaly can be estimated by using 2-dimensional image of phase velocity image with position and wavelength based on distortion phenomena of surface wave due to underground anomaly. Overall procedure of proposed method such as field testing, signal processing and interpretation of the result was introduced. Numerical verification study was performed by using various ground models containing underground anomaly. According to the condition of anomaly, the propagation and reflection characteristics of surface wave were different and this could be more easily shown in the image of phase velocity. Some rules of distortion phenomena were found and these become clues for estimating underground anomaly in interpreting real field data. Field verification tests were performed with conventional geophysical methods such as DC resistivity method and GPR. Though field condition is not homogeneous like numerical models, similar distortion phenomena were found in the testing results and estimated location of underground anomaly was agreed well with the results of another geophysical methods.