• Title/Summary/Keyword: DC power transmission

Search Result 293, Processing Time 0.025 seconds

Analysis of Packet Transmission Delay in the DC Power-Line Fault Management System using IEEE 802.15.4 (IEEE 802.15.4를 적용한 직류배전선로 장애관리시스템에서 패킷전송 지연시간 분석)

  • Song, Han-Chun;Hwang, Sung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.259-264
    • /
    • 2014
  • IEEE 802.15.4 has been emerging as the popular choice for various monitoring and control applications. In this paper, a fault management system for DC power-lines has been designed using IEEE 802.15.4, in order to monitor DC power-lines in real time, and to rapidly detect faults and shut off the line where such faults occur. Numbers were allocated for each node and unslotted CSMA-CA method of IEEE 802.15.4 was used, the performance of which was analyzed by a simulation. For such purpose, a total of 60 bits of the control data consisting of 16 bits of the current, 16 bits of the amplitude, 28 bits of the terminal state data were sent out, and the packet transfer rate and the transmission delay time of the fault management system for DC power-lines were measured and analyzed. When the traffic load was 330 packets per second or lower, the average delay time was shown to be shorter than 0.02 seconds, and when the traffic load was 260 packets per second or lower, the packet transfer rate was shown to be 99.99% or higher. Therefore, it was confirmed that the stringent condition of US Department of Energy (DOE) could be satisfied if the traffic load was 260 packets per second or lower, The results of this study can be utilized as basic data for the establishment of the fault management system for DC power-lines using IEEE 802.15.4.

DC-OPF Algorithm using Relative-Contribution Index in Generators (송전선에 흐르는 전력조류의 발전기별 상대 기여도를 이용한 DC-OPF 알고리듬)

  • Bang, Young-Sun;Ko, Dong-Wook;Chun, Yeong-Han
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.390-391
    • /
    • 2006
  • The economic dispatch problem is important in both power system planning and operation, although there have been major advances in defining and solving more complete Optimal Power Flow(OPF) problems, there exists a need for constrained economic dispatch techniques which, though not as rigorous or as exact an OPF, are fast enough to be used on desktop computers. This paper presents a DC-OPF algorithm that is based upon Relative-Contribution Index in Generators. The transmission constraints are modeled as linear constraint based on a DC-Power-Flow model. An detailed illustrative example is presented.

  • PDF

A DC-Offset Elimination Algorithm Based on an AR Model (AR모델을 이용한 직류 옵셋 성분 제거 알고리즘)

  • Chang Soo Young;Lee Dong Gyu;Kang Sang Hee
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.289-291
    • /
    • 2004
  • ln this paper, A dc-offset elimination novel algorithm based on an An model is proposed. The algorithm can eliminate dc-offset rapidly than other algorithms. The signal of fault current can be presented as a linear equation combined sinusoidal with exponential signals. Then, the linear equation can be presented an auto-regressive(AR) model and do-offset can be calculated by the equation of AR model. So it is possible to be removed the dc-offset from the original current signal. Performance evaluation of the algorithm was tested on condition that A-phase ground fault on 154kV 25km overhead transmission line.

  • PDF

The characteristics of Resonant class ${\phi}_2$ Inverter for short range wireless power transmission (근거리 무선전력전송용 공진형 Class ${\phi}_2$ 인버터 동작 특성)

  • Yang, Hae-Youl;Park, Jae-Hyun;Kim, Chang-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.13-14
    • /
    • 2011
  • The power conversion converter for driving the wireless power transfer system is can be into the two part of the DC power conversion rectifier and the high frequency dc-ac power conversion inverter. In this paper, The operating characteristics of the Class-${\Phi}_2$ resonant inverter have been investigated through by simulation and by experiment. It can be switched at a high frequency without the switching losses and the harmonics are reduced effectively due to the input LC filter. Its switching frequency is 1MHz and the input voltage is 96V which is the output voltage of LLC resonant converter. And its output peak voltage is 170V. The resonant inverter module operated at the commercial power source of 220V was built. And also the electromagnetic coupled resonance coils were designed for wireless power transfer with a 1MHz operating frequency. As a experimental result, the wireless power transmission was confirmed and it is varified the validity of the experiment.

  • PDF

Design and tests of prototype HTS power transmission cables

  • Ha, Hong-Su;Jo, Yeong-Sik;Oh, Sang-Su;Seong, Gi-Cheol;Kwon, Yeong-Gil;Ryu, Gang-Sik;Cho, Jeon-Uk
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.280-284
    • /
    • 2000
  • The prototype high-T$_c$ superconducting (HTS) power transmission cables have been designed and fabricated multi layers of spirally wound HTS tapes. The cables were made Bi-2223 based Ag-sheathed HTS tapes, and tested in LN$_2$. Critical currents of 700A dc and better were achieved. The magnetic flux density and field direction were analyzed in the cable configuration. In this paper the results of analysis and tests of HTS power transmission cables were described.

  • PDF

Design of the 10MHz and 10W Power Source for Short Distance Wireless Power Transmission (근거리 무선 전력 전송을 위한 평형 증폭기 구조의 10MHz 10W급 전력원 설계)

  • Park, Dong-Hoon;Kim, Gui-Sung;Lim, Eun-Cheon;Park, Hye-Mi;Lee, Moon-Que
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.437-441
    • /
    • 2012
  • In this paper, we have designed and manufactured 10MHz power source for the application of short distance wireless power transmission. The designed power source consists of a DDS(direct digital synthesizer) signal generator, a buffer driver and a balanced power amplifier. Short range wireless power transmission is usually carried out by near-field inductive coupling between source and load. The distance variation between source and load gives rise to the change of load impedance of power amplifier, which has effect on the operation of power amplifier. To overcome this problem due to load variation of power amplifier, we have adopted the balanced power amplifier using the quadrature hybrid implemented by lumped capacitors and a mutually coupled coil. The experiment results show the above 40dBm output power, frequency range of 9 to 11MHz, and total DC power consumption of 36W.

A Method for Estimating an Instantaneous Phasor Based on a Modified Notch Filter

  • Nam Soon-Ryul;Sohn Jin-Man;Kang Sang-Hee;Park Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • A method for estimating the instantaneous phasor of a fault current signal is proposed for high-speed distance protection that is immune to a DC-offset. The method uses a modified notch filter in order to eliminate the power frequency component from the fault current signal. Since the output of the modified notch filter is the delayed DC-offset, delay compensation results in the same waveform as the original DC-offset. Subtracting the obtained DC-offset from the fault current signal yields a sinusoidal waveform, which becomes the real part of the instantaneous phasor. The imaginary part of the instantaneous phasor is based on the first difference of the fault current signal. Since a DC-offset also appears in the first difference, the DC-offset is removed trom the first difference using the results of the delay compensation. The performance of the proposed method was evaluated for a-phase to ground faults on a 345kV 100km overhead transmission line. The Electromagnetic Transient Program was utilized to generate fault current signals for different fault locations and fault inception angles. The performance evaluation showed that the proposed method can estimate the instantaneous phasor of a fault current signal with high speed and high accuracy.

The Dielectric Characteristics of Turn-to-Turn Insulation for DC Reactor Type HTSFCL (DC reactor type 고온호전도 한류기의 턴간 절연 특성)

  • 백승명;정종만;이창화;류엔반둥;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1299-1304
    • /
    • 2003
  • Fault current limiters (FCL) are extensively needed to suppress fault currents, especially for trunk power systems heavily connected to high voltage/large current transmission lines. Due to its ideal electrical behavior, high-temperature superconductor fault current limiter (HTSFCL) becomes one of the most important developing trends of limiters in power system. This paper describes the result of an investigation of the dielectric characteristics of turn-to-turn insulation for pancake and solenoid type reactor coil in liquid nitrogen. The influence of thickness in a variety length, on AC, DC and impulse surface flashover has been investigated. Also, the relationships between the number of turn and breakdown characteristics were clarified. The information gathered in this test series should be helpful in the design of liquid nitrogen filled DC reactor type HTSFCL.

EMTDC Modeling Method of DC Reactor type Superconducting Fault Current Limiter

  • Lee, Jaedeuk;Park, Minwon;Yu, In-Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.56-59
    • /
    • 2003
  • As electric power systems grow to supply the increasing electric power demand short-circuit current tends to increase and impose a severe burden on circuit breakers and power system apparatuses. Thus, all electric equipment in a power system has to he designed to withstand the mechanical and thermal stresses of potential short-circuit currents. Among current limiting devices, Fault Current Limiter (FCL) is expected to reduce the short-circuit current. Especially, Superconducting Fault Current Limiters (SFCL) offer ideal performance: in normal operation the SFCL is in its superconducting state and has negligible impedance, in the event of a fault, the transition into the normal conducting state passively limits the current. The SFCL using high-temperature superconductors offers a positive resolution to controlling fault-current levels on utility distribution and transmission networks. This study contributes to the EMTDC based modeling and simulation method of DC Reactor type SFCL. Single and three phase faults in the utility system with DC reactor type SFCLs have been simulated using EMTDC in order to coordinate with other equipments, and the results are discussed in detail.

A Study on the Impact of HVDC Transmission System to Interconnect Large-scale Power Generation Plants to Power Grid in Korea (HVDC 송전을 이용한 동해안 신규전원의 수도권 계통 연계방안에 대한 연구)

  • Han, Su-Young;Gwon, Do-Hun;Chung, Il-Yop;Lim, Jae-Bong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1647-1656
    • /
    • 2013
  • Although the demand for electricity has been increasing these days, it becomes more difficult to find new sites for large-scale power generation plants near urban areas due to environmental and economic issues. Therefore, new power plants are forced off to rural or desolate coastal areas. As a result, there is significant regional imbalance in power generation and consumption between urban and rural areas in South Korea. This paper investigates the feasibility of high-voltage DC (HVDC) system as a candidate for electric power transmission system from east-coastal sites to metropolitan area. To this end, this paper analyzes transient stability and dynamic impact of a HVDC transmission system and compares the results to conventional high-voltage AC (HVAC) transmission systems via PSS/E simulation. This paper also examines the effect of HVDC system to voltage variation and low-frequency resonance in the neighboring buses in the grid using ESCR(Effective Short Circuit Ratio)과 UIF(Unit Interaction Factor) indices.