• 제목/요약/키워드: DC power substation

검색결과 65건 처리시간 0.033초

순환최소자승법을 이용한 직류도시철도 변전소의 가선전압변동 모델링 (Modelling Voltage Variation at DC Railway Traction Substation using Recursive Least Square Estimation)

  • 배창한
    • 전력전자학회논문지
    • /
    • 제20권6호
    • /
    • pp.534-539
    • /
    • 2015
  • The DC overhead line voltage of an electric railway substation swings depending on the accelerating and regenerative-braking energy of trains, and it deteriorates the energy quality of the electric facility in the DC railway substation and restricts the powering and braking performance of subway trains. Recently, an energy storage system or a regenerative inverter has been introduced into railway traction substations to diminish both the variance of the overhead line voltage and the peak power consumption. In this study, the variance of the overhead line voltage in a DC railway substation is modelled by RC parallel circuits in each feeder, and the RC parameters are estimated using the recursive least mean square (RLMS) scheme. The forgetting factor values for the RLMS are selected using simulated annealing optimization, and the modelling scheme of the overhead line voltage variation is evaluated through raw data measured in a downtown railway substation.

전철용 직류변전소의 최적용량설계에 관한 연구 (A Study on Optimal Design of DC Substation Capacity for Mass Transit System)

  • 김종구;이상동;백병산;이현두;이준엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.1405-1407
    • /
    • 2000
  • This paper is on optimal design for DC substation capacity for Mass Transit System. Three factors are considered for the design i.e. substation arrangements, line configuration and substation power capacity. In this study, we discussed substation power capacity only. At first, DC-fed-traction system is introduced on an outline, a characteristics of train and fed network. Optimal design procedures is described, and modelling for DC-fed-traction system are presented. The circuit-solution method is presented by matrix formula. In order to simulate DC substation power capacity more closely to actual situations, we proposed the program.

  • PDF

DC전철구간의 에너지회생장치 개발 방향 (Direction for Development of Energy Regeneration Device for DC Electric Railway System)

  • 김용기;배창한;한문섭;양영철;장수진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.804-808
    • /
    • 2007
  • when electric traction system used DC 1500V runs on decline of rail road track and slows down, Dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. This paper described a DC electric railway system, which can generate the excessive DC power form DC bus line to AC source in substation for traction system. The proposed regeneration inverter system for DC traction can be used as both an inverter and an active power filter(APF). As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. In addition, electric traction system products harmonic current and voltage distortion and reactive power because power converter is used so regeneration inverter normally runs such as active power filter(APF) for improving power quality. From the viewpoint of both power capacity and switching losses, the system is designed on the basis of three phase PWM inverters and composed of parallel inverters, output transformers, and an LCL filter.

  • PDF

도시철도직류변전소의 회생전력 흡수를 위한 회생인버터 시뮬레이션 (Simulation study of a regenerative inverter for absorption of regenerative energy in a DC traction substation)

  • 배창한;한문섭;김용기;권삼영;박현준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.705-711
    • /
    • 2005
  • In DC traction substation with 12-pulse diode rectifiers, the DC line voltage tends to rise above noload voltage because it can't absorb the regenerative power caused by electric brakes of train. To solve this problem, an IGBT regenerative inverter should be installed and recycles the surplus regenerative power by delivering it. to the supply grid. In this paper, the DC traction substation equipped with a IGBT regenerative inverter is studied using computer simulation. Matlab/simulink is used to simulate the operation of regenerative inverter which injects the regenerative power into the supply grid and stabilizes the DC line voltage. It is confirmed that the high quality regenerative power is delivered to the supply grid thorough computer simulation.

  • PDF

도시철도 직류변전소의 회생전력흡수를 위한 계통연계형 인버터 시뮬레이션 (Simulation study of a grid-connected inverter for absorption of regenerative energy in a DC traction substation)

  • 배창한;한문섭;정호성;김용기;박현준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.279-281
    • /
    • 2005
  • In DC traction substation with 12-pulse diode rectifiers, the DC line voltage tends to rise above noload voltage because it can't absorb the regenerative power caused by electric brakes of train. To solve this problem, an IGBT regenerative inverter should be installed and thus recycles the surplus regenerative power by delivering it to the supply grid. In this paper, the DC traction substation equipped with a IGBT regenerative inverter is studied using computer simulation. Matlab/simulink is used to simulate the operation of regenerative inverter which injects the regenerative power into the supply grid and stabilizes the DC line voltage. It is confirmed that the high quality regenerative power is delivered to the supply grid thorough computer simulation.

  • PDF

전력계통 제어를 위한 변전소 AC/DC 겸용 비상전원에 관한 연구 (A study of AC/DC combined emergency source for power system control)

  • 전범배;이형한;김창곤;안보순;윤기섭;정종기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.135-138
    • /
    • 2005
  • This paper focuses on emergency source and control of substation against the consequence of power system breakdown or outage. the aim of the paper is to provide ideas and guidance concerning methods of using AC/DC combined emergency source for power system control to restore power system after unforseen events, such as outages caused by natural disaster. so the emergency source and lamp is very important for restoration control of substation after outage. therefore, this paper proposes countermeasure and method for security of substation emergency source and lamp which is restored at breakdown.

  • PDF

전철용 직류변전소의 최적 위치 및 용량 설계에 관한 연구 (A Study on Design of Optimal Location and Capacity of DC Substation for Mass Transit System)

  • 김종구;이상동;백병산;이현두;이준엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.398-401
    • /
    • 2000
  • This paper describes the design of optimal location and capacity of DC substation for Mass Transit System. Three factors are considered for the design i.e. substation arrangements, line configuration and substation power capacity. In this study, we considered all of them for capacity calculation of power supply system for MTS. At first, DC-fed-traction system is introduced on an outline, a characteristics of train and fed network, and design method of substation arrangements. Optimal design procedures are described, and program for capacity calculation of the system is presented. In addition, the computer simulated results are compared with the conventional simple calculation method.

  • PDF

DC전철구간의 회생인버터시스템 개발 (Development of Regeneration Invertor System for DC Electric Railway System)

  • 김용기;김주락;한문섭;김준구;양영철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.505-511
    • /
    • 2008
  • when electric traction system used DC 1500V runs on decline of rail road track and slows down, dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. This paper described a DC electric railway system, which can generate the excessive DC power form DC bus line to AC source in substation for traction system. The purpose of this study was the development of the regenerative inverter system which suppress extra DC-line voltage and regenerate the energy instead of using a resister. That is Developed regenerative inverter system returns the regenerative energy from the DC line voltage to the utility. In addition, the inverter can be compensate the harmonics caused by the power conversion devices used in the DC traction system.

  • PDF

DC 급전시뮬레이션을 통한 도시철도 회생에너지 활용 분석 (Analysis of Utilizing Regenerative Energy in Railway System through a DC Power Supply Simulation)

  • 신승권;정호성;김형철;박종영
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1479-1484
    • /
    • 2014
  • This paper deals with regenerative energy in railway system which one of the largest customer in terms of load capability. Unlike the other loads of power system, loads of railway systems change in time and space. It has a characteristic amount of generating regenerative energy by frequent starting and braking in railway system. Therefore, it is expected higher utilization in railway system than the other systems. The purpose of DC power supply simulation is analyzing backed energy, regenerative energy by each railway vehicle and substation. In this paper, regenerative energy utilization are analyzed using DC power supply simulation and it is performed changing major influence on the design such as the number of installing absorber, internal resistance value, no-load voltage value at substation or operating parameters at regenerative energy utilization. After simulating, results are compared and analyzed.

경량전철 전력공급시스템의 용량 산정에 관한 연구 (A Study on Capacity Calculation of Power Supply System for Light Rail Transit)

  • 백병산;서광덕;김종구
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 추계학술대회 논문집
    • /
    • pp.696-703
    • /
    • 2000
  • This paper describes the capacity calculation of power supply system for light Rail Transit Three factors are considered for the design i.e. substation arrangements, line configuration and substation power capacity. In this study, we considered all of them for capacity calculation of power supply system for LRT. At first DC-fed-traction system is introduced on an outline, a characteristics of train and fed network, and design method of substation arrangements. Optimal design procedures are described, and program for capacity calculation of the system is presented. In addition, the computer simulated results are computed with the conventional simple calculation method.

  • PDF