• Title/Summary/Keyword: DC power control

Search Result 2,434, Processing Time 0.033 seconds

Application of a Robust Fuzzy Sliding Mode Controller Synthesis on a Buck-Boost DC-DC Converter Power Supply for an Electric Vehicle Propulsion System

  • Allaoua, Boumediene;Laoufi, Abdellah
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • The development of electric vehicle power electronics system control, composed of DC-AC inverters and DC-DC converters, attract much research interest in the modern industry. A DC-AC inverter supplies the high-power motor torques of the propulsion system and utility loads of electric vehicles, whereas a DC-DC converter supplies the conventional low-power and low-voltage loads. However, the need for high-power bidirectional DC-DC converters in future electric vehicles has led to the development of many new topologies of DC-DC converters. The nonlinear control of power converters is an active research area in the field of power electronics. This paper focuses on the use of the fuzzy sliding mode strategy as a control strategy for buck-boost DC-DC converter power supplies in electric vehicles. The proposed fuzzy controller specifies changes in control signals based on the surface and knowledge on surface changes to satisfy the sliding mode stability and attraction conditions. The performance of the proposed fuzzy sliding controller is compared to that of the classical sliding mode controller. The satisfactory simulation results show the efficiency of the proposed control law, which reduces the chattering phenomenon. Moreover, the obtained results prove the robustness of the proposed control law against variations in load resistance and input voltage in the studied converter.

Decoupled Power Control of Three-port Dual Active Bridge DC-DC Converter for DC Microgrid Systems (DC 마이크로 그리드를 위한 Three-port Dual Active Bridge DC-DC 컨버터의 독립 전력 제어)

  • Sim, Ju-Young;Lee, Jun-Young;Choi, Hyun-Jun;Kim, Hak-Sun;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.366-372
    • /
    • 2018
  • Three-port dual-active bridge (DAB) converter in a DC microgrid was studied due to its high power density and cost-effectiveness. The other advantages of DAB include galvanic isolation and bidirectional power conversion capability using simple control modulation. The three-port DAB converter consists of a three winding transformer and three bridges. The transformer has three phases, which means that the ports are coupled. Thus, the three-port DAB converter causes unwanted power flows when the load connected to each port changes. The basic operational principles of the three-port DAB converter are presented in this study. The decoupling control strategy of the independent port power transfer is presented with a mathematical power model to overcome the unexpected power flow problem. The validity of the proposed analysis and control strategy is verified with PSIM simulation and experiments using a 1-kW prototype power converter.

Pole placement technique for control design of DC-DC switchmode power converter (극점 배치 기법을 통한 DC-DC 컨버터의 제어 설계)

  • 조윤제
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.480-484
    • /
    • 2000
  • The pole placement technique for control design of the current mode controlled DC-DC switchmode power converter is proposed. It is compared with conventional transfer function analysis. Using the pole placement technique control design automation algorithm, by computer-based tool is presented. Control design example with large signal simulation is shown.

  • PDF

DC Bias Control of High Frequency Transformer in High Power FB DC/DC Converter (대용량 FB DC/DC 컨버터에 있어서 고주파변압기 편 여자 현상 및 제어)

  • 김태진
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.45-48
    • /
    • 2000
  • By the use of he DSP and microprocessor controller many high power converter such as especially inverter and motor drive system may be enhanced resulting in the improved robustness of EMI the ability to communicate the operating conditions and the ease of adjusting the control parameters. However the digital controller using DSP or microprocessor has not been applied in the high frequency switching power supplies especially in full bridge dc/dc converters. this paper presents a promising solution to the dc bias control problem of high frequency transformer in high power full bridge converter.

  • PDF

Design of a control scheme for applying DC power sources to a distribution system (배전시스템에 DC 전력원을 적용하기 위한 제어 기법 설계)

  • Hwang, Chul-Sang;Kim, Gyeong-Hun;Byeon, Gilsung;Jeon, Jin-Hong;Jo, Chang-Hee;Park, Minwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1056-1057
    • /
    • 2015
  • A common DC bus is a useful connection for several DC output sources such as photovoltaic (PV), fuel cells, and batteries. Operation of the common DC power system with more than two DC output sources, especially in a stand-alone mode, requires a control scheme for the stable operation of the system. In this paper, a control scheme has been developed for applying DC power sources to the distribution system. The purpose of the control scheme is to make the best use of the DC power sources. The DC power system consists of PV, two energy storage systems and a DC-AC inverter with the control scheme. A distribution system was modeled in PSCAD/EMTDC. As the results, the control scheme is applied to the DC-AC inverter and the DC-DC converter for transfer operations between the grid-connected and the stand-alone mode to keep the DC bus and the AC voltage constant. The results from the simulation demonstrate the stable operation of a grid connected DC power system.

  • PDF

Design of active power factor control AC/DC converter having current control loop with no compensator (전류 제어 루프에 보상을 행하지 않는 능동 역률 제어 AC/DC 컴버터의 제어기 설계)

  • 이인호;김성환;유지윤;박귀태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.216-223
    • /
    • 1996
  • The active power factor control AC/DC converter needs a current loop compensator to obtain better dynamic characteristics and power factor performance, but the optimal design of a current loop compensator is difficult because the AC/DC converter is a nonlinear system having periodically varying poles and zeros. The predictive current control scheme generates a control input using the dynamic equations of the AC/DC converter so that the dynamic of the AC/DC converter is included in the controller and the necessary bandwidth and the gain characteristics of the current control loop are satisfied. And as a result, a compensator becomes unnecessary and the current loop shows the improved current loop characteristics. In this paper, a power factor controller without current loop compensator by adopting a predictive current control scheme is designed and the designed power factor controller is modelled by using a small signal perturbation modelling technique, and simulated to investigate its small signal characteristics. A 200 W power factor control AC/DC converter is built to verify the effectiveness of the proposed power factor controller.

  • PDF

Development an Structure and Control Algorithm of Propulsion Control for Driving Railway Vehicle in Both AC and DC Power Supply Section (AC 및 DC 전력공급구간 운전을 위한 도시철도용 추진제어시스템의 구조 및 제어 알고리즘 개발)

  • Lee, Chang-Hee;Lee, Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.84-91
    • /
    • 2019
  • This study proposes a AC/DC railway vehicle control algorithm that enables simultaneous driving of AC and DC power supply sections. In the Seoul metropolitan region, trolley voltage for railway vehicle is divided into AC and DC power supplies. Therefore, AC/DC railway vehicle algorithm is essential for driving on the outskirts of the region. This study analyzes resonance and beat phenomena for simultaneously running in AC and DC power supply sections, and proposes a control algorithm for railway vehicles with the application of damping and beatless controls based on this analysis. The performance of the proposed algorithm is verified by simulation and analysis of actual driving results.

Novel DC Grid Connection Topology and Control Strategy for DFIG-based Wind Power Generation System

  • Yi, Xilu;Nian, Heng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.466-472
    • /
    • 2013
  • The paper presents a novel DC grid connection topology and control strategy for doubly-fed induction generator (DFIG) based wind power generation system. In order to achieve the wind power conversion, the stator side converter and the rotor side converter is used to implement the DFIG control based on the indirect air-gap flux orientation, and a DC/DC converter is used for the DFIG system to DC grid connection. The maximum power point tracking and DC voltage droop control can also be implemented for the proposed DFIG system. Finally, a 4-terminal DFIG-based multi-terminal DC grid system is developed by Matlab to validate the availability of the proposed system and control strategy.

Advanced Droop Control Scheme in Multi-terminal DC Transmission Systems

  • Che, Yanbo;Zhou, Jinhuan;Li, Wenxun;Zhu, Jiebei;Hong, Chao
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1060-1068
    • /
    • 2018
  • Droop control schemes have been widely employed in the control strategies for Multi-Terminal Direct Current (MTDC) system for its high reliability. Under the conventional DC voltage-active power droop control, the droop slope applies a proportional relationship between DC voltage error and active power error for power sharing. Due to the existence of DC network impedance and renewable resource fluctuation, there is inevitably a DC voltage deviation from the droop characteristic, which in turn results in inaccurate control of converter's power. To tackle this issue, a piecewise droop control with DC voltage dead band or active power dead band is implemented into controller design. Besides, an advanced droop control scheme with versatile function is proposed, which enables the converter to regulate DC voltage and AC voltage, control active and reactive power, get participated into frequency control, and feed passive network. The effectiveness of the proposed control method has been verified by simulation results.

Design of the power generator system for photovoltaic modules

  • Park, Sung-Joon
    • Journal of IKEEE
    • /
    • v.12 no.4
    • /
    • pp.239-245
    • /
    • 2008
  • In this paper, a dc-dc power converter scheme with the FPGA based technology is proposed to apply for solar power system which has many features such as the good waveform, high efficiency, low switching losses, and low acoustic noises. The circuit configuration is designed by the conventional control type converter circuit using the isolated dc power supply. This new scheme can be more widely used for industrial power conversion system and many other purposes. Also, I proposed an efficient photovoltaic power interface circuit incorporated with a FPGA based DC-DC converter and a sine-pwm control method full-bridge inverter. The FPGA based DC-DC converter operates at high switching frequency to make the output current a sine wave, whereas the full-bridge inverter operates at low switching frequency which is determined by the ac frequency. As a result, we can get a 1.72% low THD in present state using linear control method. Moreover, we can use stepping control method, we can obtain the switching losses by Sp measured as 0.53W. This paper presents the design of a single-phase photovoltaic inverter model and the simulation of its performance.

  • PDF