• Title/Summary/Keyword: DC feedback loop

Search Result 101, Processing Time 0.025 seconds

A Single-Input Single-Output Approach by using Minor-Loop Voltage Feedback Compensation with Modified SPWM Technique for Three-Phase AC-DC Buck Converter

  • Alias, Azrita;Rahim, Nasrudin Abd.;Hussain, Mohamed Azlan
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.829-840
    • /
    • 2013
  • The modified sinusoidal pulse-width modulation (SPWM) is one of the PWM techniques used in three-phase AC-DC buck converters. The modified SPWM works without the current sensor (the converter is current sensorless), improves production of sinusoidal AC current, enables obtainment of near-unity power factor, and controls output voltage through modulation gain (ranging from 0 to 1). The main problem of the modified SPWM is the huge starting current and voltage (during transient) that results from a large step change from the reference voltage. When the load changes, the output voltage significantly drops (through switching losses and non-ideal converter elements). The single-input single-output (SISO) approach with minor-loop voltage feedback controller presented here overcomes this problem. This approach is created on a theoretical linear model and verified by discrete-model simulation on MATLAB/Simulink. The capability and effectiveness of the SISO approach in compensating start-up current/voltage and in achieving zero steady-state error were tested for transient cases with step-changed load and step-changed reference voltage for linear and non-linear loads. Tests were done to analyze the transient performance against various controller gains. An experiment prototype was also developed for verification.

Adaptive Fuzzy Speed Controller Design for DC Servo Motor (직류 서보 전동기를 대상으로한 적응퍼지속도제어기의 설계)

  • Ko, Bong-Woon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.994-997
    • /
    • 2003
  • This Paper presents a study of the performance of a DC servo motor with a model reference adaptive fuzzy speed controller (MRAFSC) in the presences of load disturbances. MRAFSC comprised inner feedback loop consisting of the fuzzy logic controller (FLC) and plant, and outer loop consisting of an adaptation mechanism which is designed for tuning a control rule of the FLC. Experimental results show the good performance in the DC servo motor system with the proposed adaptive fuzzy controller.

  • PDF

PWM DC-AC Converter Regulation using a Multi-Loop Single Input Fuzzy PI Controller

  • Ayob, Shahrin Md.;Azli, Naziha Ahmad;Salam, Zainal
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.124-131
    • /
    • 2009
  • This paper presents a PWM dc-ac converter regulation using a Single Input Fuzzy PI Controller (SIFPIC). The SIFPIC is derived from the signed distanced method, which is a simplification of a conventional fuzzy controller. The simplification results in a one-dimensional rule table, that allows its control surface to be approximated by a piecewise linear relationship. The controller multi-loop structure is comprised of an outer voltage and an inner current feedback loop. To verify the performance of the SIFPIC, a low power PWM dc-ac converter prototype is constructed and the proposed control algorithm is implemented. The experimental results show that the SIFPIC performance is comparable to a conventional Fuzzy PI controller, but with a much reduced computation time.

The Stablity and Transient Response in the Buck-Boost DC-DC Converter (승강엽형 DC-DC 콘버어터의 안정도 및 과도 응답)

  • 김희준;김순창
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.5
    • /
    • pp.421-430
    • /
    • 1991
  • This paper investigated the errect of the right-half-plane zero on stability in the buck-boost DC-DC converter which is one type of the switching regulator and the stability region for the variation of the output current is obtained by evaluating the feedback gain. And it is clarified that the damping ratio decreases gradually by increase of the feedback loop gain and the regulation system of the converter becomes unstable, and from the transient response analysis we obtainedthe stability region about this converter. From above result it is known that the stability decreases by the existence of the right-half-plane zero. For the improvement of stability, we carried out one pole compensation in feedback circuit and obtained the avaliable stability region in relation to the gain bandwidth product from the stability and transient response analysis. These results were established experiment.

  • PDF

A New Sensorless Control Scheme Using Simple Duty Feedback Technique in DC/DC Converters (DC/DC 컨버터에서 Duty Feedback을 이용한 새로운 센서리스 제어기법)

  • 이동윤;노형주;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.554-562
    • /
    • 2002
  • This paper presents a new sensorless control scheme using simple duty signal feedback technique in DC/DC converters. The proposed Duty Feedback Control(DFC) has the characteristics that they show the same as operation performance of current mode control by using duty feedback technique without current sensor as well as present faster dynamic response performance than conventional Sensorless Current Mode(SCM) control in case that input source is perturbed by step change or DC input source includes the harmonics. Also, the proposed control scheme has good noise immunity and simple control circuits since they have one feedback loop, and can be applied to all DC/DC converters. The concept and control principles of the proposed control scheme are explained in detail and the validity of the proposed control scheme is verified through several interesting simulated and experimental results.

Average Current Mode Control for LLC Series Resonant DC-to-DC Converters

  • Park, Chang Hee;Cho, Sung Ho;Jang, Jinhaeng;Pidaparthy, Syam Kumar;Ahn, Taeyoung;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • An average current mode control scheme that consistently offers good dynamic performance for LLC series resonant DC-to-DC converters irrespective of the changes in the operational conditions is presented in this paper. The proposed control scheme employs current feedback from the resonant tank circuit through an integrator-type compensation amplifier to improve the dynamic performance and enhance the noise immunity and reliability of the feedback controller. Design guidelines are provided for both current feedback and voltage feedback compensation. The performance of the new control scheme is demonstrated through an experimental 150 W converter operating with 340 V to 390 V input voltage to provide a 24 V output voltage.

A Transimpedance Amplifier Employing a New DC Offset Cancellation Method for WCDMA/LTE Applications

  • Lee, Cheongmin;Kwon, Kuduck
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.825-831
    • /
    • 2016
  • In this paper, a transimpedance amplifier based on a new DC offset cancellation (DCOC) method is proposed for WCDMA/LTE applications. The proposed method applies a sample and hold mechanism to the conventional DCOC method with a DC feedback loop. It prevents the removal of information around the DC, so it avoids signal-to-noise ratio degradation. It also reduces area and power consumption. It was designed in a $0.13{\mu}m$ deep n-well CMOS technology and drew a maximum current of 1.58 mA from a 1.2 V supply voltage. It showed a transimpedance gain of $80dB{\Omega}$, an input-referred noise current lower than 0.9 pA/${\surd}$Hz, an out-of-band input-referred 3rd-order intercept point more than 9.5 dBm, and an output DC offset lower than 10 mV. Its area is $0.46mm{\times}0.48mm$.

Characteristics of a High Power Factor Boost Converter with Continuous Current Mode Control

  • Kim, Cherl-Jin;Jang, Jun-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.65-72
    • /
    • 2004
  • Switching power supply systems are widely used in many industrial fields. Power factor correction (PFC) circuits have a tendency to be applied in new power supply designs. The input active power factor correction (APFC) circuits can be implemented in either the two-stage approach or the single-stage approach. The two-stage approach can be classified into boost type PFC circuit and dc/dc converter. The power factor correction circuit with a boost converter used as an input power source is studied in this paper. In a boost power factor correction circuit there are two feedback control loops, which are a current feedback loop and a voltage feedback loop. In this paper, the regulation performance of output voltage and compensator to improve the transient response presented at the continuous conduction mode (CCM) of the boost PFC circuit is analyzed. The validity of designed boost PFC circuit is confirmed by MATLAB simulation and experimental results.

선단 부하를 갖는 병진운동 단일 링크 탄성암 선단의 closed-loop 제어

  • 정훈;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.185-189
    • /
    • 1992
  • This paper prsents an end-point control of a one-link flexible arm with a payload by using closed loop control. Tip position of arm is shifted by the base motion according to DC servomotor, whivh is driven by a feedback signal composed of the tip displacement and the estimated tip velocity. The shifting problem of the arm from initial position to desired position is considered by the variation of the displacement gain Gd and velocity agin Gv. Theoretical results are obtained by applying the method of the Laplace transform to the governing equations and the method of numerical inversion. This system is composed of a flexible arm with payload, DC servomotor, and a ballscrew mechanism. The flexible arm is mounted on a mobile stage driven by a servomotor and ballscrew. In controlling the tip displacement of flexible arm, the fundamental bode vibration is supressed more rapidly with an increase of the velocity feedback gain Gv and the feedback displacemenmt gain Gd. Theretical responses are approximately in good agreement with those obtained experimentally.

Improved Transmitter Power Efficiency using Cartesian Feedback Loop Chip

  • Chong, Young-Jun;Lee, Il-Kyoo;Oh, Seung-Hyeub
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.93-99
    • /
    • 2002
  • The Cartesian loop chip which is one of key devices in narrow-band Walky-Talky transmitter using RZ-SSB modulation method was designed and implemented with 0.35 Um CMOS technology. The reduced size and low cost of transmitter were available by the use of direct-conversion and Cartesian loop chip, which improved the power efficiency and linearity of transmitting path. In addition, low power operation was possible through CMOS technology. The performance test results of transmitter showed -23 dBc improvement of IMD level and -30 dEc below suppression of SSB characteristic in the operation of Cartesian loop chip (closed-loop). At that time, the transmitting power was about 37 dBm (5 W). The main parameters to improve the transmitting characteristic and to compensate the distortion in feed back loop such as DC-offset, loop gain and phase value are interfaced with notebook PC to be controlled with S/W.