• Title/Summary/Keyword: DC electric traction vehicle

Search Result 20, Processing Time 0.023 seconds

Analysis of Fire Accident on Power Line for DC Electric Traction Vehicles (전기철도 전원계통에서의 화재사고 사례 분석)

  • Song, Jae-Yong;Cho, Young-Jin;Nam, Jung-Woo;Kim, Jin-Pyo;Park, Nam-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.18-23
    • /
    • 2010
  • This paper describes a cause of fire accidents on power system fire DC electric traction vehicles. We investigated fire scene of power line for DC electric traction vehicles. From analysis results, the cause of fire on power line turned out line to ground fault between a feeder of electric power services(pantagraph) and DC electric traction vehicle roof. Fire accident of DC electric traction vehicles be assumed that electric sparks had been produced between the pantagraph and the power line conductor by repetitively making contact and separation, maybe if some material like branches get in between connecting rod it makes progress line to ground fault. ZnO arresters are widely used to protect DC electric traction vehicles against overvoltages caused by lightning or switching surges. However, the arresters are deteriorated by commercial overvoltages and/or lightning one. The deteriorated arresters could lead power failures, such as line to ground fault by a thermal runaway resulting from the increases in leakage current even in a nominal power system voltage. Finally, the power failures would be causative of the fire accident.

Analysis of Fire Accident on DC Electric Traction Vehicles Caused by Breakdown in the Line Breaker (회로 차단기 절연파괴로 인한 직류 전기철도 화재 사고사례 분석)

  • Park, Nam-Kyu;Song, Jae-Yong;Goh, Jae-Mo;Kim, Jin-Pyo;Nam, Jung-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.16-21
    • /
    • 2017
  • Fire or electrical problem while DC electric traction vehicle operation caused by various reasons can lead to not only suspension of the operation, but also severe aftermath such as massive casualty. In this paper, fire analysis on DC electric traction vehicle caused by electrical breakdown on line breaker, which is in connection with the power supply, is presented. When the electric arc, the by-product of frequent line breaker operation, is not fully diminished, it leads to electrical breakdown and fire. Especially, electrical breakdown can be easily induced by the open-and-close operation of inner contractor inside line breaker, eventually followed by ground fault and generation of transient current. Electric arc is consequent on the ground fault and acts as possible ignition source, leading to fire. Also, during the repetitive operation of the line breaker, the contactor is separated each other and some copper powder is generated, and the copper powder provided breakdown path, resulting in fire.

Analysis of Fire Accidents on Power Line for DC Electric Traction Vehicles (전기철도 전원계통에서의 화재 사고사례 분석)

  • Song, Jae-Yong;Cho, Young-Jin;Kim, Jin-Pyo;Park, Nam-Kyu;Kil, Gyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.241-247
    • /
    • 2008
  • This paper describes a cause of fire accidents on power system for DC electric traction vehicles. We investigated fire scene of power line for DC electric traction vehicles. From analysis results, the cause of fire on power line turned out line to ground fault between a feeder of electric power services(pantagraph) and DC electric traction vehicle roof. Fire accidents of DC electric traction vehicles be assumed that electric sparks had been produced between the pantagraph and the power line conductor by repetitively making contact and separation, maybe if some material like branches get in between connecting rod it make progress line to ground fault. ZnO arresters are widely used to protect DC electric traction vehicles against overvoltages caused by lightning or switching surges. However, the arresters are deteriorated by commercial frequency overvoltages and/or lightning one. Deteriorated arresters could lead power failures, such as line to ground fault by a thermal runaway resulting from the increases in leakage current even in a nominal power system voltage. The power failures, such as line to ground fault would be causative of the fire accidents.

  • PDF

A Study on the Optimal Selection of Lightning Arresters for DC Electric Traction Vehicles (직류전동차 탑재용 피뢰기의 최적선정에 관한 연구)

  • Kil, Gyung-Suk;Rhyu, Keel-Soo;Song, Jae-Yong;Kim, Il-Kwon;Park, Dae-Won;Han, Moon-Sup
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.112-116
    • /
    • 2007
  • In this paper, we proposed a selection and application recommendations of ZnO arresters for DC electric traction vehicles. To decide the Continuous Operating Voltage($U_C$), the Rated Voltage($U_r$), and the Nominal Discharge Current(In), we measured and analyzed system voltages and surge currents flowing the arrester installed on a DC electric traction vehicle under running state. System voltages measured up to 1,800 V in 1,500 V-system, and surge currents were recorded up to 3 times per a running-service-route and their magnitudes were ranges of $150A{\sim}2kA$. From these results and a standard EN50163, we could proposed $U_C$, $U_r$, and In available for the 1,500 VDC electric traction vehicles.

Diagnostic Techniques of Lightning Arresters for DC Electric Traction Vehicles (직류전동차용 피뢰기 진단기술)

  • Kil Gyung-Suk;Song Jae-Yong;Kim Il-Kwon;Moon Seung-Bo;Shin Gwang-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.357-361
    • /
    • 2006
  • This paper dealt with the performance evaluation and the diagnostic techniques of lightning arresters for DC electric traction vehicle. Field Measurements on the protective operation of lightning arresters against surge currents were carried out on running vehicles to acquire the data necessary for the diagnosis. The frequency and the magnitude of surge events were analyzed. Surge currents of $1\sim3$ times were recorded in one running service route and their magnitudes were ranges of $150A\sim2kA$. Also, an acceleration experiment on a lightning arrester by the standard lightning impulse current of 8/20 us and 5 kA was performed to know the aging characteristics. After the surge current application of 3,000 times, the reference voltage decreased by 4.5 %, and the leakage current was below 10 uA at the continuous operating voltage and about 50 uA at the rated voltage. From the experimental results, we propose a decision level of leakage current for the arrester used in this paper and designed an arrester tester which analyzes arrester condition by the magnitude of leakage current.

DEVELOPMENT OF FUEL CELL HYBRID ELECTRIC VEHICLE PERFORMANCE SIMULATOR

  • Park, C.;Oh, K.;Kim, D.;Kim, H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.287-295
    • /
    • 2004
  • A performance simulator for the fuel cell hybrid electric vehicle (FCHEV) is developed to evaluate the potentials of hybridization for fuel cell electric vehicle. Dynamic models of FCHEV's electric powertrain components such as fuel cell stack, battery, traction motor, DC/DC converter, etc. are obtained by modular approach using MATLAB SIMULINK. In addition, a thermodynamic model of the fuel cell is introduced using bondgraph to investigate the temperature effect on the vehicle performance. It is found from the simulation results that the hybridization of fuel cell electric vehicle (FCEV) provides better hydrogen fuel economy especially in the city driving owing to the braking energy recuperation and relatively high efficiency operation of the fuel cell. It is also found from the thermodynamic simulation of the FCEV that the fuel economy and acceleration performance are affected by the temperature due to the relatively low efficiency and reduced output power of the fuel cell stack at low temperature.

A Study on the Efficiency of Energy Storage System Applied to the Power Traction System of DC Electric Railway (직류전기철도에서 운행시격에 따른 에너지저장장치의 효율에 관한 연구)

  • Kim, Sung-Dae;Choi, Kyu-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.754-760
    • /
    • 2011
  • In the DC traction system, a large load current of electric railcar leads to a voltage drop when a vehicle starts, and the regenerative power generated by brake system increases the catenary voltage. To minimize the voltage fluctuation during the train operation and make use of the regenerative power, several types of energy storage systems are being studied. The energy storage system that is being recently introduced consists of the supercapacitors for energy storage and the bi-direction DC/DC converter for charge/discharge control. The efficiency of the energy storage system depends on the train operation pattern. In this paper, the operation efficiency of the energy storage system was quantitatively analyzed via simulation study taking consideration of the train operation patterns. The simulation was conducted changing the headway of trains with the energy storage system that uses the bi-direction DC/DC converter and supercapacitor. The simulation results showed that the operation efficiency of the energy storage system increases as the headway increase.

  • PDF

A Study on Ripple Current Reduction of Interleaved Bi-directional DC-DC Converter for Traction Characteristic of Railway Vehicle (철도차량 견인특성을 고려한 인터리브드 양방향 DC-DC 컨버터의 리플전류 저감에 관한 연구)

  • Lee, Hwan;Jung, No-Geon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.733-739
    • /
    • 2017
  • Research on fuel cell systems attracting attention as an environmentally friendly energy source has been actively conducted. And research is being conducted on railway vehicles that use direct current power generated by a fuel cell as an energy source. In this paper, a two-phase interleaved bidirectional DC-DC converter has been proposed which can supply electric energy of a battery to a traction motor during powering and charge the battery with regenerative energy during braking. Therefore, the topology of the energy storage system applied to the railway vehicle was analyzed, and the simulation was performed by constructing the power conversion system by this topology. Experiments were also conducted through hardware design and fabrication based on the simulation analysis results, and the validity of the hardware implementation was verified.

The design of the traction power supply for the test line of Light Rail Vehicle (경전철 시험선용 전력공급시스템 설계)

  • 김국진;백병산;전용주;정상기;김남규
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.322-328
    • /
    • 2001
  • In the electric railway systems, it is very important that we should design the system configuration, location and power capacity of substation. This paper presents the results of system configuration and system design of the DC traction power supply for the test line of Light Rail Vehicle. The voltage fluctuation of train and the power capacity of substation are calculated by computer simulation using the nodal equation, K.C.L/K.V.L, Ohm's law and superposition theory.

  • PDF

Energy Conversion System using a Novel Multi-Mode DC/DC Converter for Hybrid Electric Vehicles (새로운 멀티 모드 DC-DC 컨버터를 이용한 하이브리드 전기자동차용 전력변환 시스템)

  • Park, Tae-Sik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.192-198
    • /
    • 2013
  • The rapidly growing demand for electric power systems in electric vehicles (EVs) and hybrid electric vehicles (HEVs) require simpler, cost-effective, and higher performance components. In this paper, a novel power conversion system for hybrid electric vehicles is proposed for these needs. The proposed power conversion system reduces the conversion system cost while preserving same functionality. The proposed power conversion system can boost multi-sources to drive a traction motor and to store energy at the same time reducing number of switching components. In this paper, all operational modes of the proposed converter are explained in detail and verified by a computer simulation first. Then, the topology and operational modes are experimentally verified. Based on the results, the feasibility of the proposed multi-mode single leg power conversion system for EV and HEV applications is discussed.