• Title/Summary/Keyword: DC electric fields

Search Result 62, Processing Time 0.024 seconds

Effect of Electric Fields on the Propagation Speed of Tribrachial Flames in Coflow Jets (동축류 제트에서 삼지화염 전파의 전기장 효과에 대한 실험적 연구)

  • Won, Sang-Hee;Chung, Suk-Ho;Cha, Min-Suk
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.220-226
    • /
    • 2006
  • The effect of electric fields on the propagation speed of tribrachial flames has been investigated in a coflow jet by observing the transient flame propagation behavior after ignition. Without having electric fields, the propagation speed of tribrachial flame edges showed a typical behavior by having an inverse proportionality to the mixture fraction gradient at the flame edge. The behavior of flame propagation with the electric fields was investigated by applying high voltage to the central fuel nozzle and the enhancement of propagation speed has been observed by varying the applied voltage and frequency for AC electric fields. The propagation speed of tribrachial flame was also investigated by applying negative and positive DC voltages to the nozzle and similar improvements of the propagation speed were also observed. The propagation speeds of tribrachial flames in both the AC and DC electric fields were correlated well with the electric field intensity, defined by the electric voltage divided by the distance between the nozzle electrode and the edge of tribrachial flames.

  • PDF

Effect of Applied DC Electric Fields in Flame Spread over Polyethylene-Coated Electrical Wire (폴리에틸렌 피복전선 화염의 전파에 영향을 미치는 직류전기장의 인가 효과에 관한 실험적 연구)

  • Jin, Young-Kyu;Kim, Min-Kuk;Park, Jeong;Chung, Suk-Ho;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.321-330
    • /
    • 2011
  • We experimentally investigated the effect of applied DC electric fields on the flame spread over polyethylene-coated electrical wire. The flame-spread rates over electrical wire with negative and positive DC electric fields from 0 to ${\pm}7$ kV were measured and analyzed. We compared the results for DC electric fields with previous results for AC electric fields. We explored whether or not various flame shapes could be obtained with DC electric fields and the main reason for the flame-spread acceleration, particularly at the end of the electrical wire, for AC electric fields. We found that DC electric fields do not significantly affect the flame-spread rates. However, the flame shape is mildly altered by the ionic wind effect even for DC electric fields. The flame-spread rate is relevant to the flame shape and the slanted direction in spite of the mild impact. A possible explanation for the flame spread is given by a thermal-balance mechanism and fuel-vapor jet.

Experimental Study on the Effect of DC Electric Field on Extinction Characteristics of Counterflow Diffusion Flame (대향류 확산화염의 소염특성에 미치는 직류전기장의 영향에 관한 실험적 연구)

  • Park, I.H.;Kim, M.K.;Won, S.H.;Cha, M.S.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.253-259
    • /
    • 2006
  • The effect of DC electric fields on the flame extinction was investigated experimentally in counterflow configurations for the methane/oxygen/nitrogen diffusion flame. The electric fields was applied by connecting the high voltage and ground terminals to the upper and lower burners, respectively. In case of having electric fields, several modes of flame extinction was observed according to the electric field intensity and strain rate defined by the exit velocity. To visualize and characterize the flame structure and intensity, planar LIF technique was adopted for OH radicals. Consequently, several length scales, including the flame width, thickness, and height from the burner tip, were introduced to explain the various flame behaviors and to characterize the flame extinctions. It was found that the variation of flame width and the chemical reaction are strongly related to a critical electric field intensity, thus the various modes of diffusion flame extinction could be observed due to the electric fields.

  • PDF

Diffusive-Thermal Instability and Buoyancy-Driven Instability in Laminar Attached Free-jet Flames with DC Electric Fields (직류 전기장을 인가한 층류부착화염에서 물질-열 확산 및 부력에 의한 화염진동 비교에 관한 연구)

  • Han, Jong-Kyu;Yoon, Sung-Hwan;Park, Jeong;Yun, Jin-Han;Gil, Sang-In;Seo, Sang-Il;Kim, Young-Ju
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.3
    • /
    • pp.41-51
    • /
    • 2011
  • In this paper, we describe the behavior of two self-excitations in laminar attached free-jet flames under the influence of DC electric fields, one of buoyancy-driven and the other of diffusion-thermal instability, established from the horizontal and vertical injection. In the horizontal injection with removed buoyancy effect, oscillating flames with the frequency of 1.3 - 7.4 Hz were observed in a certain condition with Lewis number more than unity. On the other hand, it was appeared Lewis number induced self-excitation as well as buoyancy-driven self-excitation in the vertical upward injection with DC electric fields. This behavior had frequency range of 1.6 - 9.4 Hz and was exhibited to attribute the buoyancy effect. Finally, a well-defined division about two self-excitations having similar frequency range is briefly discussed.

Characteristics of DC Corona Discharges Caused at the tip of a Needle-shaped Electrode Placed in the Homogeneous Electric Fields (균등전계 중에 놓인 침상 전극의 끝단에서 발생한 직류 코로나방전 특성)

  • Kim, Tae-Ki;Kim, Seung-Min;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.74-81
    • /
    • 2015
  • In the measurement of atmospheric static electric field, it is important to know characteristics of corona discharges caused at the tip of test electrode. This paper presents the fundamental data of DC corona discharges that occurred at the tip of a needle-shaped electrode placed in the homogeneous background electric field which simulates the atmospheric static field under thundercloud. The major characteristics of interest for this purpose are the polarity effect of corona discharges and the magnitudes and time intervals of corona current pulses. The experimental set-up consists of the plate-to-plate configuration with a needle-shaped protrusion, DC power supply, and voltage and current measuring devices. As a result of experiments, the polarity dependence of corona pulses is significantly pronounced. The time intervals between successive corona pulses in the negative polarity is much longer than those in the positive polarity. The time intervals for both polarities is drastically decreased as the applied electric field is increased. Also the magnitudes of the positive corona pulses are slightly changed with an increase in applied electric field, but those of the negative corona pulses are linearly increased with increasing the applied electric fields.

Effect of Electric Fields on Flame Speed of Propagating Premixed Flames in Tube (전기장이 튜브내 예혼합화염 전파속도에 미치는 영향에 관한 연구)

  • Ryu, S.K.;Won, S.H.;Cha, M.S.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.137-143
    • /
    • 2006
  • The effect of electric fields on flame speed has been investigated experimentally by observing propagating premixed flames in a tube for methane/air mixtures. The flame speeds were measured in both the normal and micro gravity conditions to substantiate the measurements. The results show that the flame speeds were enhanced by both the AC and DC electric fields, as the flame approached to the high voltage electrode located on the one end of the tube. The enhancement of flame speed was proportional to the square root of the electric field intensity, defined as the voltage applied divided by the distance of flame from the high voltage electrode, when the electric field intensity is sufficiently large. When the electric field intensity was low, there existed critical intensities, below which the electric fields did not influence the flame speed. This critical electric field intensity correlated well with the flame speed.

  • PDF

Effect of AC Electric Fields on Flow Instability in Laminar Jets (층류제트유동 불안정성에 미치는 교류 전기장 효과)

  • Kim, Gyeong Taek;Lee, Won June;Cha, Min Suk;Park, Jeong;Chung, Suk Ho;Kwon, Oh Boong;Kim, Min Kuk;Lee, Sang Min
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.3
    • /
    • pp.1-6
    • /
    • 2016
  • The effect of applied electric fields on jet flow instability was investigated experimentally by varying the direct current (DC) voltage and the alternating current (AC) frequency and voltage applied to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configuration, which occur when AC electric fields are applied. The results indicate that a twin-lifted jet flames originates from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as $O_2+e{\rightarrow}O_2{^-}$ when AC electric fields are applied. This was confirmed by experiments in which a variety of gaseous jets were ejected from a nozzle to which DC voltages and AC frequencies and voltages were applied, with ambient air between two deflection plates connected to a DC power source. Experiments in which jet flows of several gases were ejected from a nozzle and AC electric fields were applied in coflow-nitrogen provided further evidence. The flow instability occurred only for oxygen and air jets. Additionally, jet instability occurred when the applied frequency was less than 80 Hz, corresponding to the characteristic collision response time. The effect of AC electric fields on the overall structure of the jet flows is also reported. Based on these results, we propose a mechanism to reduce jet flow instability when AC electric fields are applied to the nozzle.

Analysis of Collisional Sheath in an Argon dc Discharge (아르곤 직류방전의 충돌쉬스 구조해석)

  • Choi, Young-Wook;Lee, Hae-June
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1647-1649
    • /
    • 2003
  • The electric fields of the sheath region in an argon do discharge were measured using a laser optogalvanic spectroscopy in a pressure range from 0.88 to 10 Torr, where collisions are significant in the sheath region. The sheath width is estimated as the position where the electric field becomes zero, and the pressure dependence of the measured sheath width was obtained to be $(pressure)^{-1/3}$. The measured electric fields agree well with one-dimensional simulation results but are slightly different from collisional sheath theory in the mobility limited region.

  • PDF

DC V-I Characteristics of a High Temperature Superconductor for a 600 kJ Superconducting Magnetic Energy Storage Device in an Oblique External Magnetic Field (경사 외부자장에 대한 600 kJ급 SMES용 HTS도체의 DC V-I 특성)

  • Li, Zhu-Yong;Ma, Yong-Hu;Ryu, Kyung-Woo;Choi, Se-Yong;Kim, Hae-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.79-84
    • /
    • 2008
  • We are developing a small-sized high temperature superconducting magnetic energy storage (HTS-SMES) magnet with the nominal storage capacity of 600 kJ, which provides electric power with high quality to sensitive electric loads. Critical current and N-value of a high temperature superconductor with large current, which was selected for the development of the 600 kJ HTS-SMES magnet, were investigated in various oblique external magnetic fields. Based on the critical current and N-value measured for the short sample conductor, we discussed the DC V - I characteristic of a model coil fabricated with the same conductor of 500 m. The results show that the measured critical current and N-value of the conductor for parallel field are constant in external magnetic fields less than about 0.2 T. However, for oblique fields, its critical current and N -value abruptly decrease in all external magnetic fields. Moreover, the measured critical current of the model coil well agrees with the numerically calculated one based on the DC V - I characteristic measured for the short sample conductor. This suggest that losses and critical currents for an HTS-SMES magnet made up of a high temperature superconductor with anisotropic characteristic are predictable from the data of a short sample conductor.

Effect of Dynamic Electric Fields on Dielectric Reliability in Cu Damascene Interconnects (동적인 전기장이 다마신 구리 배선에서의 절연파괴에 미치는 영향)

  • Yeon, Han-Wool;Song, Jun-Young;Lim, Seung-Min;Bae, Jang-Yong;Hwang, Yuchul;Joo, Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.111-115
    • /
    • 2014
  • Effect of dynamic electric fields on dielectric breakdown behavior in Cu damascene interconnects was investigated. Among the DC, unipolar, and bipolar pulse conditions, the longest dielectric lifetime is observed under the bipolar condition because backward Cu ion drift occurs when the direction of electric field is changed by 180 degrees and Cu contamination is prohibited as a results. Under the unipolar pulse condition, the dielectric lifetime increases as pulse frequency increases and it exceed the lifetime under DC condition. It suggests that the intrinsic breakdown of dielectrics significantly affect the dielectric breakdown in addition to Cu contamination. As the unipolar pulse width decreases, dielectric bond breakdown is more difficult to occur.