• Title/Summary/Keyword: DC charging

Search Result 289, Processing Time 0.023 seconds

A Three-Phase High Frequency Semi-Controlled Battery Charging Power Converter for Plug-In Hybrid Electric Vehicles

  • Amin, Mahmoud M.;Mohammed, Osama A.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.490-498
    • /
    • 2011
  • This paper presents a novel analysis, design, and implementation of a battery charging three-phase high frequency semi-controlled power converter feasible for plug-in hybrid electric vehicles. The main advantages of the proposed topology include high efficiency; due to lower power losses and reduced number of switching elements, high output power density realization, and reduced passive component ratings proportionally to the frequency. Additional advantages also include grid economic utilization by insuring unity power factor operation under different possible conditions and robustness since short-circuit through a leg is not possible. A high but acceptable total harmonic distortion of the generator currents is introduced in the proposed topology which can be viewed as a minor disadvantage when compared to traditional boost rectifiers. A hysteresis control algorithm is proposed to achieve lower current harmonic distortion for the rectifier operation. The rectifier topology concept, the principle of operation, and control scheme are presented. Additionally, a dc-dc converter is also employed in the rectifier-battery connection. Test results on 50-kHz power converter system are presented and discussed to confirm the effectiveness of the proposed topology for PHEV applications.

A 11 kW 5.58 kW/L Electrolytic Capacitor-less EV Charger With Single- and Three-Phase Compatibility (11kW 5.58kW/L 무(無)전해커패시터 단상/3상 겸용 전기자동차 탑재형 충전기)

  • Kim, Hyung-Jin;Park, Jun-Yeong;Kim, Sun-Ju;Hakim, Ramadhan Muhammad;Phuc, Huu Kieu;Cho, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.277-284
    • /
    • 2021
  • A single and three phase-compatible single-stage EV charger without electrolytic capacitor is proposed in this study. DC battery-charging current is inherently guaranteed in the three-phase grid due to three output currents with a phase shift of 120° between each other. The proposed EV charger can provide a DC battery charging current for the single-phase grid through the integrated active power decoupling circuit without using additional switches. The proposed EV charger ensures ZVS turn-on of all switches with wide grid and battery voltage ranges. The 11 kW prototype of the proposed EV charger demonstrates a peak efficiency of 97.01% and a power density of 5.58 kW/L.

Optimal SOC Reference Based Active Cell Balancing on a Common Energy Bus of Battery

  • Bae, SunHo;Park, Jung-Wook;Lee, Soo Hyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.29-38
    • /
    • 2017
  • This paper presents a study on the state-of-charge (SOC) reference based active cell balancing in real-time. The optimal references of SOC are determined by using the proposed active cell balancing system with the bidirectional DC/DC converters via the dual active bridge (DAB) type. Then, the energies between cells can be balanced by the power flow control of DAB based bidirectional DC/DC converters. That is, it provides the effective management of battery by transferring energy from the strong cell to the weak one until the cell voltages are equalized to the same level and therefore improving the additional charging capacity of battery. In particular, the cell aging of battery and power loss caused from energy transfer are considered. The performances of proposed active cell balancing system are evaluated by an electromagnetic transient program (EMTP) simulation. Then, the experimental prototype is implemented in hardware to verify the usefulness of proposed system.

Novel High Step-Up DC/DC Converter Structure Using a Coupled Inductor with Minimal Voltage Stress on the Main Switch

  • Moradzadeh, Majid;Hamkari, Sajjad;Zamiri, Elyas;Barzegarkhoo, Reza
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2005-2015
    • /
    • 2016
  • A high-step-up DC/DC converter for renewable energy systems is proposed. The proposed structure provides high voltage gain by using a coupled inductor without the need for high duty cycles and high turn ratios. The voltage gain is increased through capacitor-charging techniques. In the proposed converter, the energy of the leakage inductors of the coupled inductor is reused. This feature reduces the stress on the switch. Therefore, a switch with low ON-state resistance can be used in the proposed converter to reduce losses and increase efficiency. The main switch is placed in series with the source. Therefore, the converter can control the energy flow from the source to the load. The operating principle is discussed in detail, and a steady state analysis of the proposed converter is conducted. The performance of the proposed converter is verified by experimental results.

Finite Control Set Model Predictive Control of AC/DC Matrix Converter for Grid-Connected Battery Energy Storage Application

  • Feng, Bo;Lin, Hua
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1006-1017
    • /
    • 2015
  • This paper presents a finite control set model predictive control (FCS-MPC) strategy for the AC/DC matrix converter used in grid-connected battery energy storage system (BESS). First, to control the grid current properly, the DC current is also included in the cost function because of input and output direct coupling. The DC current reference is generated based on the dynamic relationship of the two currents, so the grid current gains improved transient state performance. Furthermore, the steady state error is reduced by adding a closed-loop. Second, a Luenberger observer is adopted to detect the AC input voltage instead of sensors, so the cost is reduced and the reliability can be enhanced. Third, a switching state pre-selection method that only needs to evaluate half of the active switching states is presented, with the advantages of shorter calculation time, no high dv/dt at the DC terminal, and less switching loss. The robustness under grid voltage distortion and parameter sensibility are discussed as well. Simulation and experimental results confirm the good performance of the proposed scheme for battery charging and discharging control.

Failure Analysis of Solar Array Regulator Controller for Charging Satellite Battery (위성 배터리 충전을 위한 태양전력조절기의 제어기 고장 분석)

  • Yang, JeongHwan;Park, JeongEon;Yun, SeokTeak
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.67-71
    • /
    • 2017
  • A solar array is main electrical energy source for Low-Earth-Orbit(LEO) satellite. The solar array cannot generate electrical energy during eclipse period, a battery supply electrical energy to the satellite. The electrical power of the solar array is changed in accordance with operating voltage and the solar array has the maximum power point. The solar array regulator makes the solar array supply electrical energy to the satellite and charge the battery. The solar array is connected to the solar array regulator input and the battery is connected to the solar array regulator output. The solar array regulator consists 2 of 3 hot redundant. One solar array regulator contains 3 DC-DC converters, and the solar array regulator operates stably even if the failure occur in one DC-DC converter. In this paper, the solar array regulator, the battery and the solar array operation is analyzed when the failure occur in one DC-DC converter.

Analysis and Design of High-Power, High-Frequency Charging Circuit using FB-ZVS Converter (FB-ZVS 콘버터를 이용한 대용량.고주파 충전회로의 해석 및 설계)

  • Lee, Ki-Young;Cha, Young-Kil;Jung, Jong-Jin;Kim, Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.453-457
    • /
    • 1996
  • DC/DC converter is widely used in computer, electronic communication and industrial apparatus where the regulated dc supply is needed. FB-ZVS converter is suitable for high-power, high-frequency and constant frequency control. Because the voltage stress of the diode rectifier is high due to the ring effect, the clamp circuit is essential to reduce the voltage stress. The nondissipative active clamp circuit eliminates ring effect. Analysis of FB-ZVS converter and the validity of the active clamp circuit are studied through the simulation, and the experimental results show the superior characterics of the proposed system.

  • PDF

AC-DC buck converter topology of high power factor with soft switching mode (소프트 스위칭 모드에 의한 고역률의 AC-DC 강압형 컨버터 토폴로지)

  • 문상필;서기영;전중함;김영철;김준홍;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.417-422
    • /
    • 1997
  • This paper proposed that a AC-DC Converter topology of high power factor with soft switching mode operates with four chopper connecting a number of parallel circuit. To improve these, a large number of soft switching topologies included a resonant circuit have been proposed. And, some simulative results on computer is included to confirm the validity of the analytical results. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in partial resonant circuit makes charging engergy regenerated at input power source for resonant operation. The proposed conversion system is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

AC/DC Converter Modeling for EV Charging System using EMTP (EMTP를 이용한 전기자동차 충전기용 AC/DC 컨버터 모델링)

  • Jung, Dong-Su;Sim, Hyeong-Wook;Ju, Seong-Chul;Lee, Jae-Won;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.89-90
    • /
    • 2011
  • 최근 친환경적인 자동차 산업을 위해 지속적인 전기 자동차의 보급이 이루어지고 있다. 따라서 내연기관의 대체 교통수단으로 자리매김하기 위해 전기 자동차 충전소와 같은 적합한 인프라 구축이 필요하다. 전기 자동차 보급에 있어 가장 이슈가 되고 있는 부분은 전기 자동차의 충전시간이며 이 충전시간은 내연기관 차량의 주유 시간과 비교했을 때 비교적 길기 때문에 이를 최대한 단축시키기 위한 급속 충전 기술 개발이 시급하다. 본 논문에서는 전기 자동차용 급속 충전기에 대한 분석을 위해 EMTP(Electro Magnetic Transient Program)를 이용하여 3상 AC/DC 컨버터를 모델링하고 검증하였다.

  • PDF

DC line voltage simulator for charging/discharging control of regenerative energy storage system in DC railway (직류지하철 회생에너지 저장장치의 충/방전 제어를 위한 가선전압 모의장치)

  • Cho, Han-Jin;Kim, Jong-Yoon;Cho, Kee-Hyun;Yu, Dong-Hwan;Won, Chung-Yuen;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.209-211
    • /
    • 2007
  • 본 논문에서는 회생에너지 저장시스템의 충/방전 제어를 위한 가선전압 모의 장치를 제안한다. 제안된 시뮬레이터는 실측된 가선전압 데이터를 입력으로 받아 실측 가선전압과 동일한 전압패턴으로 모사한다. 이러한 전압패턴은 회생에너지가 포함된 가선전압이며 이를 토대로 에너지 저장시스템에 연계시켜 충/방전 제어를 좀 더 효율적으로 수행할 수 있다. 제안된 시뮬레이터는 AC/DC 컨버터 타입으로 시뮬레이션과 실험을 통해 제안된 시스템의 타당성을 확인하였다.

  • PDF