• Title/Summary/Keyword: DC Series Wound Motor

Search Result 9, Processing Time 0.031 seconds

Current Control of DC Series Wound Motor for Software Bang-Bang Controller (Software Bang-Bang 제어기에 의한 직류 직권 전동기 전류제어)

  • Bae, Jong-Il;Kim, Jung-Soo;Lee, Young-Il
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2180-2181
    • /
    • 2002
  • This paper try to become a height efficiency control method of the DC series wound motor which the forklift have been used by the Software Bang-Bang controller. We used and studies the DC series wound motor by SBB control and PI control.

  • PDF

Development on Fuzzy Controller for DC Series Wound Motor of Tensile System (초정밀 인장기용 직류 직권모터의 퍼지제어기 개발)

  • Bae, Jong-Il;Jung, Dong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.73-81
    • /
    • 2003
  • DC series wound motor is commonly used for the industrial vehicles. Although it has good operating torque, heavy variations of parameters and nonlinear properties on friction and loads make it difficult to satisfy desired performance using conventional controllers. To solve this problem, fuzzy controller is proposed in this paper. The fuzzy controller has been designed based on the fuzziness of variables, it retains robustness even with nonlinearity.

  • PDF

A Study on Design of a Compensated Bang-Bang Current Controller for Dc Series Wound Motor (직류 직권 모터용 보상된 BANG-BANG형 전류제어기 설계에 관한 연구)

  • Kim, Jong-Keon;Bae, Jong-Il;Lee, Man-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2126-2128
    • /
    • 1997
  • In order to establish the robust current controller design technique of series wound motor driver system. This paper proposes a method of compensated Bang-Bang current control using a series wound motor driver system under improperly variable load. Real time implementation of compensated Bang-Bang current controller achieved. Concept design strategy of the control and PWM waveform generation algorithms are presented in the paper.

  • PDF

The development of compensated bang-bang curent controller for DC series wound motor (직류직권 모타용 보상된 Bang-Bang 전류제어기 개발)

  • 김종건;이만형;배종일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.52-55
    • /
    • 1996
  • In order to establish the robust current controller design technique of series wound motor driver system. This paper proposes a method of compensated Bang-Bang current control using a series wound motor driver system under improperly variable load. To get minimum time torque control. A compensated Bang-Bang current controller structure is simpler than the structure of PID plus Bang-Bang controller. This paper shows that a general 8 bits microprocessor be used efficiently implementing such an algorithm. The calculation time of software is extremely small when compared with conventional PID plus Bang-Bang a controller. Both nonlinear operating characteristics of Digital switching elements and Describing Function methods are used for the analysis and synthesis. Real time implementation of compensated Bang-Bang current is achieved. Concept design strategy of the control and PWM waveform generation algorithms are presented in the paper.

  • PDF

Speed Control of DC Series Wound Motor Using a Genetic A1gorithm with Self-Tuning Method (유전알고리즘의 자기동조 방법에 의한 직류 직권모터 모터 속도제어)

  • Bae, Jong-Il;Je, Chang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2763-2765
    • /
    • 2003
  • Generally, we made use of PID control for torque control, speed control and stability, Hence, dynamic characteristic of DC motor has been studied for stable drive and accurate speed control by many engineers. But, in this paper, we applied genetic algorithm to current control for robust control and stability In conclusion, we prove that current control of genetic algorithm can be high efficiency.

  • PDF

Variable speed drive of a Switched Reluctance Motor by adjusting switching angles (Switched Reluctance Motor의 스위칭각 조정에 의한 가변속 구동특성)

  • Hwang, Jong-Kyu;Kong, Gwan-Sik;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1026-1029
    • /
    • 1993
  • Inherent speed-torque performance of Switched Reluctance Motor is similar to that of series wound DC motor. Thus, the speed of the motor is extremely regulated according to load torque. For the purpose of controlling the speed and torque of SRM it is necessary to change the applied DC link voltage or the switch-ON and switch-OFF angles which control the phase current of the motor. This paper describes speed-torque characteristics of an integral horse power Switched Reluctance Motor by adjusting the switch-ON and switch-OFF angles. Speed at rated load torque can be regulated by adjusting the switching angles and the control scheme is applied to 2kW, 3 phase, 6/4 SRM.

  • PDF

A Study on the Output Voltage Control of Series-Parallel Resonant type DC/DC Converter for Transverse Flux Linear Motor (TELM에 적용한 직병렬 공진형 DC/DC 컨버터의 출력전압 제어에 관한 연구)

  • Hwang Gye Ho;Lee Young Sik;Jeon Jin Yong;Bang Deok Je;Kim Ho Jong;Shin Byoung Chol;Kang Do Hyun;Kim Jong Moo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.1 s.10
    • /
    • pp.9-16
    • /
    • 2005
  • In this paper, with loosely coupled transformer Relies-parallel resonant type DC/DC converter is analyzed and adopted to the power source of a TFLM(Transverse Flux Linear Motor). To get more efficient operating mode of the series-parallel resonant type DC/DC converter, theoretical analysis using normalized parameters are accepted. The analysis includes a specially made ferrite transformer with two separately wound half cores in order to evaluate analytically and experimentally the changes in magnetizing the leakage fluxes and inductances caused by the distance between the halves. The proposed converter must be operated in switching Pattern III among the three switching patterns for the Zero Voltage Switching operation. According to Pulse Frequency Modulation(PFM) control method, the output voltage of the proposed circuit can be controlled. The results of the theoretical development are compared with practical measurements from a prototype system.

  • PDF

Design of DC Motor by Using Experimental Data of Tested Motor (설계 파라메터 추출에 의한 직류 직권전동기의 설계)

  • Ha, Kyeong-Ho;Yeom, Sang-Bu;Hong, Jung-Pyo;Kim, Gyu-Tak;Jo, Jae-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.738-740
    • /
    • 2000
  • This paper presents the design process for series wound DC motor with the brush by using the experimental data of a tested motor. The design parameters calculated from the experimental data are friction loss. windage loss and contact resistance of brushes. The characteristic analysis of the designed motor is performed and then the proposed method is verified by comparing with experimental result.

  • PDF

A Study on the Fuzzy Control of Series Wound Motor Drive Systems uUing Genetic Algorithms (유전알고리즘을 이용한 직류직권모터 시스템의 퍼지제어에 관한 연구)

  • 김종건;배종일;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.60-64
    • /
    • 1997
  • Designing fuzzy controller, there are difficulties that we have to determine fuzzy rules and shapes of membership functions which are usually obtained by the amount of trial-and-error or experiences from the experts. In this paper, to overcome these defects, genetic algorithms which is probabilistic search method based on genetics and evolution theory are used to determine fuzzy rules and fuzzy membership functions. We design a series compensation fuzzy controller, then determine basic structures, input-output variables, fuzzy inference methods and defuzzification methods for fuzzy controllers. We develop genetic algorithms which may search more accurate optimal solutions. For evaluating the fuzzy controller performances through experiments upon an actual system, we design the fuzzy controllers for the speed control of a DC series motor with nonlinear characteristics and show good output responses to reference inputs.

  • PDF