• Title/Summary/Keyword: DC Offset

Search Result 277, Processing Time 0.027 seconds

A CMOS Analog Front End for a WPAN Zero-IF Receiver

  • Moon, Yeon-Kug;Seo, Hae-Moon;Park, Yong-Kuk;Won, Kwang-Ho;Lim, Seung-Ok;Kang, Jeong-Hoon;Park, Young-Choong;Yoon, Myung-Hyun;Yoo, June-Jae;Kim, Seong-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.769-772
    • /
    • 2005
  • This paper describes a low-voltage and low-power channel selection analog front end with continuous-time low pass filters and highly linear programmable-gain amplifier(PGA). The filters were realized as balanced Gm-C biquadratic filters to achieve a low current consumption. High linearity and a constant wide bandwidth are achieved by using a new transconductance(Gm) cell. The PGA has a voltage gain varying from 0 to 65dB, while maintaining a constant bandwidth. A filter tuning circuit that requires an accurate time base but no external components is presented. With a 1-Vrms differential input and output, the filter achieves -85dB THD and a 78dB signal-to-noise ratio. Both the filter and PGA were implemented in a 0.18um 1P6M n-well CMOS process. They consume 3.2mW from a 1.8V power supply and occupy an area of $0.19mm^2$.

  • PDF

Anti-Parallel Diode Pair(APDP) Mixer over 3~5 GHz for Ultra Wideband(UWB) Systems (역병렬 다이오드를 이용한 초광대역 시스템용 3~5 GHz 혼합기 설계)

  • Jung Goo-Young;Lee Dong-Hwan;Yun Tae-Yeoul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.7 s.98
    • /
    • pp.681-689
    • /
    • 2005
  • This paper presents an ultra wide band(UWB) mixer using anti-parallel diode pair(APDP) with simulation and measurement results. The proposed mixer adopts the even-harmonic direct conversion mixing, which consists of a couple of filter, in-phase wilkinson power divider, wideband $45^{\circ}$ power divider, and APDP. The m mixer is operating over 3.1 to 4.8 GHz and producing quadrature(I/Q) outputs with a conversion loss of 18 dB and input third order intercept point($IIP_3$) of 15 dBm. I/Q outputs also have difference of about 0.5 dB and phase difference of ${\times}3^{\circ}$ and $P_{1dB}$ of 2 dBm.

A High Power 60 GHz Push-Push Oscillator Using Metamorphic HEMT Technology (Metamorphic HEMT를 이 용한 60 GHz 대역 고출력 Push-Push 발진기)

  • Lee Jong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.7 s.110
    • /
    • pp.659-664
    • /
    • 2006
  • This paper reports a high power 60 GHz push-push oscillator fabricated using $0.12{\mu}m$ metamorphic high electron-mobility transistors(mHEMTs). The devices with a $0.12{\mu}m$ gate-length exhibited good DC and RF characteristics such as a maximum drain current of 700 mA/mm, a peak gm of 660 mS/mm, an $f_T$ of 170 GHz, and an $f_{MAX}$ of more than 300 GHz. By combining two sub-oscillators having $6{\times}50{\mu}m$ periphery mHEMT, the push-push oscillator achieved a 6.3 dBm of output power at 59.5 GHz with more than - 35 dBc fundamental suppression. The phase noise of - 81.5 dBc/Hz at 1 MHz offset was measured. This is one of the highest output power obtained using mHEMT technology without buffer amplifier, and demonstrates the potential of mHEMT technology for cost effective millimeter-wave commercial applications.

Single Antenna Radar Sensor with FMCW Radar Transceiver IC (FMCW 송수신 칩을 이용한 단일 안테나 레이다 센서)

  • Yoo, Kyung Ha;Yoo, Jun Young;Park, Myung Chul;Eo, Yun Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.632-639
    • /
    • 2018
  • This paper presents a single antenna radar sensor with a Ku-band radar transceiver IC realized by 130 nm CMOS processes. In this radar receiver, sensitivity time control using a DC offset cancellation feedback loop is employed to achieve a constant SNR, irrespective of distance. In addition, the receiver RF block has gain control to adjust high dynamic range. The RF output power is 9 dBm and the full chain gain of the Rx is 82 dB. To reduce the direct-coupled Tx signal to the Rx in a single antenna radar, a stub-tuned hybrid coupler is adopted instead of a bulky circulator. The maximum measured distance between the horn antenna and a metal plate target is 6 m.

Design of Programmable Baseband Filter for Direct Conversion (Direct Conversion 방식용 프로그래머블 Baseband 필터 설계)

  • Kim, Byoung-Wook;Shin, Sei-Ra;Choi, Seok-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2007
  • Recently, CMOS RF integration has been widely explored in the wireless communication area to save cost, power, and chip area. The direct conversion architecture, rather than a more conventional super-het-erodyne, has been an attractive choice for single-chip integration because of its many advantages. However, the direct conversion architecture has several fundamental problems to solve in achieving performance comparable to a super-heterodyne counterpart. In this paper, we describe a programmable filter for mobile communication terminals using a direct conversion architecture. The proposed filter can be implemented with the active-RC filter and programmed to meet the requirements of different communication standards, including GSM, DECT and WCDMA. The filter can be tuned to select a detail frequency by changing the gate voltage of the MOS resistors. The gain of the proposed architecture can be programmed from 27dB to 72dB using the filter gain and VGA in 3dB steps.

  • PDF

Design of an Analog Array using Enhancement of Electric Field on Floating Gate MOSFETs (부유게이트에 지역전계강화 효과를 이용한 아날로그 어레이 설계)

  • Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1227-1234
    • /
    • 2013
  • An analog array with a 1.2 double poly floating gate transistor has been developed with a standard CMOS fabrication process. The programming of each cell by means of an efficient control circuit eliminates the unnecessary erasing operation which has been widely used in conventional analog memories. It is seen that the path of the signal for both the programming and the reading is almost exactly the same since just one comparator supports both operations. It helps to eliminate the effects of the amplifier input-offset voltage problem on the output voltage for the read operation. In the array, there is no pass transistor isolating a cell of interest from the adjacent cells in the array. Instead of the extra transistors, one extra bias voltage, Vmid, is employed. The experimental results from the memory shows that the resolution of the memory is equivalent to the information content of at least six digital cells. Programming/erasing of each cell is achieved with no detectable disturbance of adjacent cells. Finally, the unique shape of the injector structure in a EEPROM is adopted as a cell of analog array. It reduces the programming voltage below the transistor breakdown voltage without any special fabrication process.

A Study on Sensor Motion-Induced Noise Reduction for Developing a Moving Transient Electromagnetic System (이동하면서 측정할 수 있는 시간영역전자탐사 시스템 개발을 위한 센서흔들림유도잡음 제거 연구)

  • Hwang, Hak Soo;Lee, Sang Kyu
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.53-57
    • /
    • 1998
  • Transient electromagnetic (TEM) method is also affected by cultural and natural electromagnetic (EM) noises, since it uses part of the broadband ($10^{-2}$ to $10^5Hz$) spectrum. Especially, predominant EM noise which affects a moving transmitter-receiver TEM system is sensor motion-induced noise. This noise is caused by the sensor motion in the earth magnetic field. The technique for reducing the sensor motion-induced EM noise presented in this paper is based on Halverson stacking. This Halverson stacking is generally used in a time-domain induced polarisation (IP) system to reject DC offset and linear drift. According to spectrum analysis of the vertical component of sensor motion-induced noise, the frequency range affected by the motion of an EM sensor is less than about 700 Hz in this study. With the decrease of the frequency, the spectral power caused by the motion of a sensor increases. For example, at the frequency of 200 Hz, the spectral power of the sensor motion-induced noise is $-90dBVrms^2$ while the spectral power of the EM noise measured with a fixed sensor on the ground is $-105dBVrms^2$, and at the frequency of 100 Hz, the spectral power of the sensor motion-induced noise is $-70dBVrms^2$ while the spectral power of the EM noise measured with a fixed sensor on the ground is $-105dBVrms^2$. With applying Halverson stacking to an artificial noise transient generated by adding a noise-free transient to sensor motion-induced noise measured without pulsing, it is shown that the filtered transient is nearly consistent with the noise-free transient within a delay time of $0.5{{\mu}sec}$. The inversion obtained from this filtered transient is in accord with the true model with an error of 5%.

  • PDF

CMOS ROIC for MEMS Acceleration Sensor (MEMS 가속도센서를 위한 CMOS Readout 회로)

  • Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.119-127
    • /
    • 2014
  • This paper presents a CMOS readout circuit for MEMS(Micro Electro Mechanical System) acceleration sensors. It consists of a MEMS accelerometer, a capacitance to voltage converter(CVC) and a second-order switched-capacitor ${\Sigma}{\Delta}$ modulator. Correlated-double-sampling(CDS) and chopper-stabilization(CHS) techniques are used in the CVC and ${\Sigma}{\Delta}$ modulator to reduce the low-frequency noise and DC offset. The sensitivity of the designed CVC is 150mV/g and its non-linearity is 0.15%. The duty cycle of the designed ${\Sigma}{\Delta}$ modulator output increases about 10% when the input voltage amplitude increases by 100mV, and the modulator's non-linearity is 0.45%. The total sensitivity is 150mV/g and the power consumption is 5.6mW. The proposed circuit is designed in a 0.35um CMOS process with a supply voltage of 3.3V and a operating frequency of 2MHz. The size of the designed chip including PADs is $0.96mm{\times}0.85mm$.

L-band Voltage Controlled Oscillator for Ultra-Wideband System Applications (초광대역 응용 시스템을 위한 L밴드 전압제어발진기 설계)

  • Koo Bonsan;Shin Guem-Sik;Jang Byung-Jun;Ryu Keun-Kwan;Lee Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.820-825
    • /
    • 2004
  • In this paper an octave tuning voltage controlled oscillator which is used in set-top TV tuner was designed. Oscillation frequency range is 0.9 GHz~2.2 GHz with 1.3 GHz bandwidth. By using 4 varactor diodes in base and emitter of transistor, wide-band tuning, sweep linearity and low phase noise could be achieved. Designed VCO requires a tuning voltage of 0 V ~ 20 V and DC consumption of 10 V and 15 mA. Designed VCO exhibits an output power of 5.3 dBm $\pm$1.1 dB and a phase noise below -94.8 dBc/Hz @ 10 kHz over the entire frequency range. The sweep linearity shows 65 MHz/V with a deviation of $\pm$10 MHz.

Inverse effect of Nickel modification on photoelectrochemical performance of TiNT/Ti photoanode (TiNT/Ti 광아노드의 광전기화학 특성에 미치는 Ni 금속의 영향)

  • Lee, JeongRan;Choi, HaeYoung;Shinde, Pravin S.;Go, GeunHo;Lee, WonJae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.100-100
    • /
    • 2011
  • Nanomaterial architecture with highly ordered, vertically oriented $TiO_2$ nanotube arrays shows a good promise for diverse technological applications. As inspired from the literature reports that Nickel modification can improve the photocatalytic activity of $TiO_2$, it was planned to coat Ni into the $TiO_2$ matrix. In this study, first $TiO_2$ nanotubes(TiNTs) were prepared by anodization (60V,3min) in HF-free aqueous electrolyte on ultrasonically cleaned polished titanium sheet substrates ($1{\times}7cm^2$). The typical thickness of the sintered TiNT ($500^{\circ}C$for10min) was ~1 micronas confirmed from the FESEM study. In the next part, as-anodized and sintered TiNT/Ti photoanodes were used to coat Ni by AC electrodeposition from aqueous 0.1M nickel sulphate solution. During AC electrodeposition, conditions such as 1V DC offset voltage, 9V amplitude (peak-to-peak) and 750 Hz frequency were fixed constant and the deposition time was varied as 0.5 min, 1 min, 2 min and 10 min. The photoelectrochemical performance of pristine and Ni modified TiNT/Ti photoanodes was measured in 1N NaOH electrolyte under 1 SUN illumination in the potential range of -1V and 1.2V versus Ag/AgCl reference electrode. The photocurrent performance of TiNT/Ti photoanode decreased upon Ni modification and the results were confirmed after repeated experiments. This suggests us that Ni modification inhibits the photoelectrochemical performance of $TiO_2$ nanotubes.

  • PDF