• 제목/요약/키워드: DC Distributed Power System

Search Result 126, Processing Time 0.028 seconds

Development of PV-Power-Hardware-In-Loop Simulator with Realtime to Improve the Performance of the Distributed PV Inverter (분산전원형 PV 인버터 성능 개선을 위한 실시간 처리기반의 PV-Power-Hardware-In-Loop 시뮬레이터 개발)

  • Kim, Dae-Jin;Kim, Byungki;Ryu, Kung-Sang;Lee, Gwang-Se;Jang, Moon-Seok;Ko, Hee-Sang
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.3
    • /
    • pp.47-59
    • /
    • 2017
  • As the global warming threats to humanity, renewable energy is considered the key solution to overcome the climate change. In this circumstance, distributed PV systems are being expanded significantly its market share in the renewable energy industry. The performance of inverter is the most important component at PV system and numerous researches are focusing on it. In order to improve the inverter, PV simulator is an essential device to experiment under various load and conditions. This paper proposes the PV Power-Hardware-In-Loop simulator (PHILS) with real-time processing converted electrical and mathematical models to improve computation speed. Single-diode PV model is used in MATLAB/SIMULINK for the PV PHILS to boosting computation speed and dynamic model accuracy. In addition, control algorithms for sub-components such as DC amplifier, measurement device and several interface functions are implemented in the model. The proposed PV PHILS is validated by means of experiments with commercial PV module parameters.

A Low Cost Speed Control System of PM Brushless DC Motor Using 2 Hall-ICs (2 Hall-ICs를 이용한 저가형 PM Brushless DC Motor속도 제어)

  • Kim D. K.;Yon Y. H.;Woo M. S.;Won C. Y.;Choe Y. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.132-136
    • /
    • 2003
  • Generally, PM BLDC drive system is necessary that the three Hall-ICs evenly be distributed around the stator circumference and encoder be installed in case of the 3 phase motor. So, the Hall-ICs are set up in this motor to detect the main flux from the rotor, and the output signal from Hall-ICs is used to drive a power transistor to control the winding current. However, instead of using three Hall-ICs and encoder, we used only two Hall-ICs for the permanent magnet rotor position and for the speed feedback signals, and also for a micro controller of 16-bit type (80C196KC) with the 3 phase PM BLDC whose six stator and two rotor designed. Two Hall-IC Hc and $H_B$ are placed on the endplate at 120 degree intervals, and with these elements, we estimated information of the others phase in sequence through a rotating rotor.

  • PDF

A study on vulnerability analysis and incident response methodology based on the penetration test of the power plant's main control systems (발전소 주제어시스템 모의해킹을 통한 취약점 분석 및 침해사고 대응기법 연구)

  • Ko, Ho-Jun;Kim, Huy-Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.2
    • /
    • pp.295-310
    • /
    • 2014
  • DCS (Distributed Control System), the main control system of power plants, is an automated system for enhancing operational efficiency by monitoring, tuning and real-time operation. DCS is becoming more intelligent and open systems as Information technology are evolving. In addition, there are a large amount of investment to enable proactive facility management, maintenance and risk management through the predictive diagnostics. However, new upcoming weaponized malware, such as Stuxnet designed for disrupting industrial control system(ICS), become new threat to the main control system of the power plant. Even though these systems are not connected with any other outside network. The main control systems used in the power plant usually have been used for more than 10 years. Also, this system requires the extremely high availability (rapid recovery and low failure frequency). Therefore, installing updates including security patches is not easy. Even more, in some cases, installing security updates can break the warranty by the vendor's policy. If DCS is exposed a potential vulnerability, serious concerns are to be expected. In this paper, we conduct the penetration test by using NESSUS, a general-purpose vulnerability scanner under the simulated environment configured with the Ovation version 1.5. From this result, we suggest a log analysis method to detect the security infringement and react the incident effectively.

Research Method of Driving Driver to improve Stability and Reliability of AC LED (AC LED의 안정성과 신뢰성 향상을 위한 구동용 DRIVER 연구방안)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.205-210
    • /
    • 2020
  • Thanks to the shift in awareness of environmentally friendly energy and government initiatives, practical light-emitting diode(LED) lighting fixtures have emerged and are being distributed, resulting in very large energy savings. However, in actual use of LED lighting, it is possible to use it as an individual, but when using a large street light or a whole home lighting, the whole lighting system is realized due to various problems such as efficiency, stability, and reliability. Doing so has several problems. Although AC-LED has been developed recently to solve safety problems such as heat generation phenomenon of the conventional DC-LED, it also has various problems such as quality safety and reliability, which are difficult to use as outdoor lighting using existing AC Power. This happens. Accordingly, the appropriate power for AC-LED should be developed and applied, and the emergence of such LED lighting will play a role as a tool that can overcome the limitations of existing LED lighting and implement sustainable energy saving.

ZVT Series Capacitor Interleaved Buck Converter with High Step-Down Conversion Ratio

  • Chen, Zhangyong;Chen, Yong;Jiang, Wei;Yan, Tiesheng
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.846-857
    • /
    • 2019
  • Voltage step-down converters are very popular in distributed power systems, voltage regular modules, electric vehicles, etc. However, a high step-down voltage ratio is required in many applications to prevent the traditional buck converter from operating at extreme duty cycles. In this paper, a series capacitor interleaved buck converter with a soft switching technique is proposed. The DC voltage ratio of the proposed converter is half that of the traditional buck converter and the voltage stress across the one main switch and the diodes is reduced. Moreover, by paralleling the series connected auxiliary switch and the auxiliary inductor with the main inductor, zero voltage transition (ZVT) of the main switches can be obtained without increasing the voltage or current stress of the main power switches. In addition, zero current turned-on and zero current switching (ZCS) of the auxiliary switches can be achieved. Furthermore, owing to the presence of the auxiliary inductor, the turned-off rate of the output diodes can be limited and the reverse-recovery switching losses of the diodes can be reduced. Thus, the efficiency of the proposed converter can be improved. The DC voltage gain ratio, soft switching conditions and a design guideline for the critical parameters are given in this paper. A loss analysis of the proposed converter is shown to demonstrate its advantages over traditional converter topologies. Finally, experimental results obtained from a 100V/10V prototype are presented to verify the analysis of the proposed converter.

A New Random SPWM Technique for AC-AC Converter-Based WECS

  • Singh, Navdeep;Agarwal, Vineeta
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.939-950
    • /
    • 2015
  • A single-stage AC-AC converter has been designed for a wind energy conversion system (WECS) that eliminates multistage operation and DC-link filter elements, thus resolving size, weight, and reliability issues. A simple switching strategy is used to control the switches that changes the variable-frequency AC output of an electrical generator to a constant-frequency supply to feed into a distributed electrical load/grid. In addition, a modified random sinusoidal pulse width modulation (RSPWM) technique has been developed for the designed converter to make the overall system more efficient by increasing generating power capacity and reducing the effects of inter-harmonics and sub-harmonics generated in the WECS. The technique uses carrier and reference waves of variable switching frequency to calculate the firing angles of the switches of the converter so that the three-phase output voltage of the converter is very close to a sine wave with reduced THD. A comparison of the performance of the proposed RSPWM technique with the conventional SPWM demonstrated that the power generated by a turbine in the proposed approximately increased by 5% to 10% and THD reduces by 40% both in voltage and current with respect to conventional SPWM.

Development of the High Input Voltage Self-Power for LVDC

  • Kim, Kuk-Hyeon;Kim, Soo-Yeon;Choi, Eun-Kyung;HwangBo, Chan;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_1
    • /
    • pp.387-395
    • /
    • 2021
  • Distributed resources such as renewable energy sources and ESS are connected to the low voltage direct current(LVDC) distribution network through the power conversion system(PCS). Control power is required for the operation of the PCS. In general, controller power is supplied from AC power or DC power through switch mode power supply(SMPS). However, the conventional SMPS has a low input voltage, so development and research on high input voltage self-power suitable for LVDC is insufficient. In this paper, to develop Self-Power that can be used for LVDC, the characteristics of the conventional topology are analyzed, and a series-input single-output flyback converter using a flux-sharing transformer for high voltage is designed. The high input voltage Self-Power was designed in the DCM(discontinuous current mode) to reduce the switching loss and solve the problem of current dissipation. In addition, since it operates even at low input voltage, it can be applied to many applications as well as LVDC. The validity of the proposed high input voltage self-power is verified through experiments.

Fault Diagnosis of Solar Power Inverter Using Characteristics of Trajectory Image of Current And Tree Model (전류 궤적 영상의 특징과 트리모델을 이용한 태양광 전력 인버터의 고장진단)

  • Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.102-108
    • /
    • 2010
  • The photovoltaic system changes solar energy into DC by solar cell and this DC is inverted into AC which is used in general houses by inverter. Recently, the use of power of the photovoltaic system is increased. Therefore, the study of 3 phase solar system to transmit large power is very important. This paper proposes a method that finds simply faults and diagnoses the switch open faults of 3-phase pulse width modulation (PWM) inverter of grid-connected photovoltaic system. The proposed method in $\alpha\beta$ plane uses the patterns of trajectory image as the characteristic parameters and differenciates a normal state and open states of switches. Then, the result is made into tree. The tree is composed of 21 fault patterns and the parameters to classify faults are a shape, a trajectory area, a distributed angle, and a typical vector angle. The result shows that the proposed method diagnosed fault diagnoses, classified correctly them, and made a pattern tree by fault patterns.

Analysis of Distributed Computational Loads in Large-scale AC/DC Power System using Real-Time EMT Simulation (대규모 AC/DC 전력 시스템 실시간 EMP 시뮬레이션의 부하 분산 연구)

  • In Kwon, Park;Yi, Zhong Hu;Yi, Zhang;Hyun Keun, Ku;Yong Han, Kwon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.159-179
    • /
    • 2022
  • Often a network becomes complex, and multiple entities would get in charge of managing part of the whole network. An example is a utility grid. While the entire grid would go under a single utility company's responsibility, the network is often split into multiple subsections. Subsequently, each subsection would be given as the responsibility area to the corresponding sub-organization in the utility company. The issue of how to make subsystems of adequate size and minimum number of interconnections between subsystems becomes more critical, especially in real-time simulations. Because the computation capability limit of a single computation unit, regardless of whether it is a high-speed conventional CPU core or an FPGA computational engine, it comes with a maximum limit that can be completed within a given amount of execution time. The issue becomes worsened in real time simulation, in which the computation needs to be in precise synchronization with the real-world clock. When the subject of the computation allows for a longer execution time, i.e., a larger time step size, a larger portion of the network can be put on a computation unit. This translates into a larger margin of the difference between the worst and the best. In other words, even though the worst (or the largest) computational burden is orders of magnitude larger than the best (or the smallest) computational burden, all the necessary computation can still be completed within the given amount of time. However, the requirement of real-time makes the margin much smaller. In other words, the difference between the worst and the best should be as small as possible in order to ensure the even distribution of the computational load. Besides, data exchange/communication is essential in parallel computation, affecting the overall performance. However, the exchange of data takes time. Therefore, the corresponding consideration needs to be with the computational load distribution among multiple calculation units. If it turns out in a satisfactory way, such distribution will raise the possibility of completing the necessary computation in a given amount of time, which might come down in the level of microsecond order. This paper presents an effective way to split a given electrical network, according to multiple criteria, for the purpose of distributing the entire computational load into a set of even (or close to even) sized computational loads. Based on the proposed system splitting method, heavy computation burdens of large-scale electrical networks can be distributed to multiple calculation units, such as an RTDS real time simulator, achieving either more efficient usage of the calculation units, a reduction of the necessary size of the simulation time step, or both.

PLL Control Method for Precise Speed Control of Slotless PM Brushless DC Motor Using 2 Hall-ICs (2 Hall-ICs를 이용한 Slotless PM Brushless DC Motor의 정밀속도제어를 위한 PLL 제어방식)

  • Woo M. S.;Yoon Y. H.;LEE T. W.;Won C. Y.;Choe Y. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.665-669
    • /
    • 2004
  • Generally, Slotless PM BLDC drive system is necessary that the three Hall-ICs evenly be distributed around the stator circumference and encoder be installed in case of the 3 phase motor. So, the Hall-ICs are set up in this motor to detect the main flux from the rotor, and the output signal from Hall-ICs is used to drive a power transistor to control the winding current. However, instead of using three Hall-ICs and encoder, we used only two Hall-ICs for the permanent magnet rotor position and for the speed feedback signals, and also for a microcontroller of 16-bit type (80C196KC) with the 3 phase Slotless PM BLDC whose six stator and two rotor designed. Two Hall-IC Hc and $H_B$ are placed on the endplate at 120 degree intervals, and with these elements, we can estimate information of the others phase in sequence through a rotating rotor.

  • PDF