• Title/Summary/Keyword: DC Converter

Search Result 3,437, Processing Time 0.032 seconds

Conducted-Noise Characteristics of a Digitally-Controlled Randomly-Switched DC-DC Converter with an FPGA-Based Implementation

  • Dousoky, Gamal M.;Shoyama, Masahito;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.228-234
    • /
    • 2010
  • This paper investigates the conducted-noise characteristics of a digitally-controlled randomly-switched dc-dc converter. In order to investigate the effect of the suggested digital controller on the conducted-noise characteristics of a dc-dc converter, three factors have been studied: the field-programmable gate array (FPGA) clock speed, the randomization ratio percentage, and the effect of using a closed loop feedback controller. A field-programmable gate array is much more flexible than analog control circuits, has a lower cost, and can be used for power supply applications. A novel FPGA-based implementation has been suggested for obtaining the experimental validations and realizing the studied concepts. Furthermore, the experimental results have been discussed and design guidelines have been included.

A Low-Profile DC-To-DC Converter for Sustain Driving Circuits of AC PDP Application Systems

  • Lee, Sang-Won;Choi, Byung-Cho;Lee, Ki-Jo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.333-336
    • /
    • 2003
  • The current paper presents the design and implementation of a low-profile dc-to-dc converter developed as a power supply for the sustain driving circuit inside large-area wall-mount ac PDP application systems. Details on the design and implementation of a 500 W prototype dc-to-dc converter, miniaturized within a 230 $mm{\times}130$ mm area with a thickness of 25 mm while still achieving a 95 % conversion efficiency, are presented to demonstrate the feasibility and application potentials of the proposed low-profile dc-to-dc converter.

  • PDF

A Study on Reducing Conduction Losses and Lossless Snubber Circuit of Full-Bridge DC-DC Converter (FB DC-DC Converter의 도전손실 저감과 무손실 스너버 회로에 관한 연구)

  • Ra, B.H.;Lee, H.W.;Kwon, S.K.;Kim, J.H.;Suh, K.Y.;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2665-2667
    • /
    • 1999
  • This Paper proposes a new toplogy snubber circuit of Full-Bridge DC-DC Converter for reducing conduction losses and snubber circuit heating loss. Using Partial Resonent Soft Switching Method and Clamping, studying on a new snubber circuit for reducing losses that a snubber circuit heating loss in the secondly diode rectification side, a switching losses in the primary side of IGBT inverter and conduction losses in the high frequency insulation transformer. In this paper, we present FB DC-DC converter included a new lossless snubber circuit, and then be analyzed and simulated.

  • PDF

$S^4$-PFC AC/DC Converter To Reduce DC Bus Stress With Coupling Inductor ($S^4$-PFC에서 커플링 인덕터를 이용하여 DC 버스 스트레스를 저감시킨 AC/DC 컨버터)

  • Lee, Jang-Hyun;Kim, Tai-Woong;Lee, Sung-Palk
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2515-2517
    • /
    • 1999
  • In this paper we analysis DC bus voltage stress at high line voltage and light load in $S^4$-PFC Isolated AC/DC converter with DC bus voltage feedback using coupling in transformer. In this converter, the principle of operation and the practical problems in the design are considered. Simulation and experimental results are presented to verify the operation and performance of the $S^4$-PFC converter with DC bus voltage feedback. Experimental sets are performed in the conditions; switching frequency 100 kHz, output of 5 V, 60W, and universal line input voltage.

  • PDF

A 94% Efficiency Current-mode DC-DC boost converter with automatic PFM/PWM conversion (94%효율을 가진 PFM/PWM 자동변환 전류-모드 DC-DC Boost 변환기)

  • Jeong, Bong-Yong;Nam, Hyun-Seok;Roh, Jeong-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.599-600
    • /
    • 2008
  • This paper presents a high performance DC-DC boost converter by current-mode control method. As load current change, the converter change PWM/PFM operation automatically. current-mode DC-DC boost converter is implemented in a standard $0.35{\mu}m$ CMOS process. The peak efficiency was 94 % with a switching frequency of 1.2MHz.

  • PDF

Design of a hybrid power management system and cold start simulation in a fuel cell ship with PLECS

  • Oh, Jin-Seok;Kang, Young-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.429-436
    • /
    • 2016
  • Currently, many studies on green ships are under way. Fuel cell (FC) ships are of interest as future low-emission, fuel-efficient vessels. In this paper, a hybrid power management system for an FC ship was designed. The system consists of an FC, a battery, a unidirectional DC/DC converter, a bidirectional DC/DC converter, a filter, an inverter, and a propulsion component. To design the system, we analyze electric sources and converters, and create PLECS models of hybrid power management system. Then, we check the cold start sequence and perform a simulation to understand the characteristics of the hybrid power management system in an FC ship.

A study on the CICDR-TL(Coupled Inductor Current Doubler Rectifier-Three Level) DC/DC Converter with Phase Shift Control (위상이동 방식을 적용한 CICDR-TL(Coupled Inductor Current Doubler Rectifier-Three Level) DC/DC 컨버터에 관한 연구)

  • Lee, Dong-Hyun;Kim, Yong;Bae, Jin-Yong;Kim, Pill-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.159-162
    • /
    • 2004
  • The paper proposes the coupled inductor rectifier of Three Level DC/DC converter CICDR-TL(Coupled Inductor Current Doubler Rectifier-Three Level) achieves Zero Voltage Switching (ZVS) for the switches in a wide load range and Zero Current Switching (ZCS) in a light load range. Advantages and disadvantages of this topology compared to the conventional Center Tapped TL Converter are discussed. Experimental evaluation results obtained on a 27V 60A DC/DC converter prototype for the 1.8kW 40kHz IGBT based experimental circuit.

  • PDF

Buck-Boost DC to DC Converter for Thermoelectric Generator with Constant Output Voltage (열전 모듈의 정전압 출력 시스템을 위한 벅-부스트 DC-DC 변환기)

  • Cho, Sung-Kyu;Park, Soon-Seo;Kim, Ji-Gon;Nam, Ki-Hun;Kim, Shi-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1845-1849
    • /
    • 2010
  • We have proposed and fabricated a Buck-Boost DC to DC Converter for Thermoelectric generator (TEG) with constant output voltage suitable for battery chargers or constant voltage supplies in the range of several watt. The experimental and simulation results have shown that the proposed method allows stable operation with maximum 86% power transfer efficiency. The proposed circuit has a merit in cost and miniaturization of a system compared to conventional MPPT algorithms, because the proposed method adopts only analog circuit without DSP or micro controller unit for calculating peak power point by iterative methods.

DC-DC Converter Using Multi Stage Capacitor (다단 콘덴서형 DC-DC 컨버터)

  • Lee, Se-Na;Song, Sung-Geun;Kim, Dong-Ok;Kim, Se-Min;Nam, Hea-Kon;Park, Sung-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.928-929
    • /
    • 2008
  • A dc/dc power conversion system using multi stage capacitor is proposed in this paper. The proposed new type converter is designed from high efficiency dc/dc converter with fixed boost ratio and variable voltage converter. The tests have been done using PSIM computer simulation to confirm the analysis and control concept.

  • PDF

An Improved Soft Switching Bi-directional PSPWM FB DC/DC Converter

  • Kim, Eun-Soo;Joe, Kee-Yeon;Kim, Yoon-Ho;Cho, Yong-Hyun;Choi, Won-Beom
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.1042-1046
    • /
    • 1998
  • A new soft switching isolated bi-directional phase shifted pulse width modulation (PSPWM) dc/dc converter is presented. Due to the use of the energy recovery snubber, the isolated bi-directional PSPWM dc/dc converter has a significant reduction of switching losses in the switching devices of the primary and secondary side bridge, respectively. The proposed soft switching bi-directional PSPWM FB dc/dc converter provides an energy recovery snubber which consists of two fast recovery diodes, a resonant capacitor and a resonant inductor. The complete operating principles and simulation results will be presented.

  • PDF