• Title/Summary/Keyword: DC Converter

검색결과 3,437건 처리시간 0.033초

A Hybrid DC/DC Converter for EV OBCs Using Full-bridge and Resonant Converters with a Single Transformer

  • Hassan, Najam ul;Kim, Yoon-Jae;Han, Byung-Moon;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.11-19
    • /
    • 2017
  • This paper proposes a dc/dc converter for electric vehicle onboard chargers using a secondary resonant tank. To attain soft switching characteristics, such as zero voltage switching, magnetizing inductance has been used at the primary side of the transformer. The leakage inductance of the transformer is used as a resonant inductor on the secondary side to avoid the use of a separate inductor as resonance. The proposed converter is applicable for a wide load range. A 6.6KW prototype has been implemented for a wide range of load variations (250V, 330V, 360V, and 413V). A maximum efficiency of 97.4% is achieved at 413V.

LC필터를 제거한 3상 AC-DC 컨버터 (Three Phase AC-DC Converter with Elimination of Filter)

  • 김종달;남징락;이옥형;김준홍;손무현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.76-79
    • /
    • 2004
  • This paper proposed that the conventional three phase AC-DC converter with bulk LC output filter has been widely used in the industry because of simple circuit, low cost and high power factor (90%). One of the biggest drawback of this three phase AC-DC converter is bulk and heavy. This is serious especially for aerospace applications. To solve this problem a new simple three phase AC-DC converter is presented. Operation of the proposed high power factor three phase AC-DC converter is illustrated and verified by PSpice simulation.

  • PDF

An Improved Zero Voltage Switching Forward DC/DC Converter For Reducing Switching Losses

  • Kim, Eun-Soo;Joe, Kee-Yeon;Park, Hae-Young;Kim, Yoon-Ho;Kim, Choon-Same
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.1051-1055
    • /
    • 1998
  • To achieve high efficiency in high power and high frequency applications, reduction of switching losses and noise is very important. In this paper, an improved zero voltage switching forward dc/dc converter is proposed. The proposed converter is constructed by using energy recovery snubbers in parallel with the main switches and output diodes of the conventional forward dc/dc converter. Due to the use of the energy recovery snubbers in the primary and secondary side, the proposed converter achieves zero-voltage-switching turn-off without switching losses for switching devices and output rectification diodes. The complete operating principles and experimental results will be presented.

ZVS기법을 사용한 양방향 소프트 스위칭 DC-DC 컨버터 (Bidirectional Soft Switching DC-DC Converter using ZVS method)

  • 오순택;김재형;엄주경;원충연;정용채
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.29-30
    • /
    • 2010
  • This paper proposed bidirectional DC-DC converter applying soft switching technique. Compared with conventional bidirectional converter, the main switches of proposed converter are operated without switching losses, and auxiliary switches were run under soft switching condition using quasi-resonant current mode. To verify the validity of the proposed converter, mode analysis and simulation results are presented.

  • PDF

High-Efficiency Grid-Tied Power Conditioning System for Fuel Cell Power Generation

  • Jeong, Jong-Kyou;Han, Byung-Moon;Lee, Jun-Young;Choi, Nam-Sup
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.551-560
    • /
    • 2011
  • This paper proposes a grid-tied power conditioning system for the fuel cell power generation, which consists of a 2-stage DC-DC converter and a 3-phase PWM inverter. The 2-stage DC-DC converter boosts the fuel cell stack voltage of 26-48V up to 400V, using a hard-switching boost converter and a high-frequency unregulated LLC resonant converter. The operation of the proposed power conditioning system was verified through simulations with PSCAD/EMTDC software. Based on the simulation results, a laboratory experimental set-up was built with a 1.2kW PEM fuel-cell stack to verify the feasibility of hardware implementation. The developed power conditioning system shows a high efficiency of 91%, which is a very positive result for the commercialization.

2차측 보조 회로를 이용한 ZVZCS Three Level DC/DC 컨버터에 관한 연구 (A Study on the Zero-Voltage and Zero-Current-Switching Three Level DC/DC Converter using Secondary Auxiliary Circuit)

  • 배진용;김용;권순도;김필수;이은영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.320-323
    • /
    • 2001
  • A ZVZCS(Zero-Voltage and Zero-Current-Switching) Three Level DC/DC Converter is presented to secondary auxiliary circuit. The converter presented in this paper used a phase shift control with a flying capacitor in the primary side to achieve ZVS for the outer switch. A secondary auxiliary circuit, which consists of one small capacitor and two small diode, is added in the secondary to provides ZVZCS conditions to primary switches, and aids to clamp secondary rectifier voltage. The auxiliary circuit Includes neither lossy component nor addition active switch, which makes the proposed converter efficient and effective. The principle of operation, feature, and design considerations are illustrated and verified through the experiment with a 500W 50kHz prototype converter.

  • PDF

An Isolated Bidirectional Modular Multilevel DC/DC Converter for Power Electronic Transformer Applications

  • Wang, Zhaohui;Zhang, Junming;Sheng, Kuang
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.861-871
    • /
    • 2016
  • With high penetration of renewable energies, power electronic transformers (PETs) will be one of the most important infrastructures in the future power delivery and management system. In this study, an isolated bidirectional modular multilevel DC/DC converter is proposed for PET applications. A modular multilevel structure is adopted as switching valves to sustain medium voltages to achieve modular design and high reliability. Only one high-frequency transformer is used in the proposed converter, which significantly simplifies the circuit and galvanic insulation design. A dual-phase-shift modulation strategy is proposed to regulate the output power and achieve a simple voltage balancing control. A down-scaled (2 kW/20 kHz) prototype is constructed to demonstrate the proposed converter and verify the control strategy. The experimental results comply with the theoretical analysis well, with the highest power efficiency reaching 97.6%.

스위칭 소자의 전도손실과 스트레스를 저감하기 위한 디지털 위상천이 공진형 컨버터에 관한 연구 (A Study of the Digital Phase-shift Resonant Converter to Reduce the conduction Loss and Stress of the Switching Device)

  • 신동률;황영민;김동완;우정인
    • 전기학회논문지P
    • /
    • 제51권1호
    • /
    • pp.10-17
    • /
    • 2002
  • Due to the development of information communication field, the interest of the SMPS(Switched Mode Power Supply) is increased. The size and weight of SMPS are decided by inductor, capacitor and transformer. Thus, the low loss converter which is operated in high speed switching is required. The resonant FB DC-DC converter is able to operate in high speed switching and apply to high power field because the switching loss is low. In this thesis, it is proposed to control strategy for constant output power of resonant FB DC-DC converter in variable input voltage. The proposed control system is a digital I-PD type control and apply to phase-shift resonant type controller. The output voltage tracks reference without steady state error in variable input voltage. The validity of proposed control strategy is verified from results of simulation and experiment.

양방향 풀-브릿지 DC-DC 컨버터를 위한 새로운 소프트 스위칭 기법 (A New Soft Switching Technique for Bi-directional Power Flow, Full-bridge DC-DC Converter)

  • 송유진;박석인;정학근;한수빈;정봉만
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 학술대회 논문집
    • /
    • pp.251-255
    • /
    • 2005
  • This paper proposes a new soft switching technique for a phase-shift controlled bi-directional DC-DC converter. The described converter employs a low profile high frequency transformer and two active full-bridge converters for bidirectional power flow capability. A new soft switching technique is proposed, which guarantees soft switching over wide range (no load to full load) without any additional circuit components. In the proposed switching scheme, the switch pairs in the diagonal position of the converter each are turned on/off simultaneously by the switching signals with a variable duty ratio depending on the phase shift amount, and the converter is operated without freewheeling interval.

  • PDF

대전류형 FB ZVS DC-DC 컨버터에 관한 연구 (High-current Full-Bridge Zero-Voltage-Switched DC-DC Converter)

  • 이병하;진정환;김인수;성세진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.365-367
    • /
    • 1995
  • This paper is concerned on developing low-voltage high-current DC-DC converter using FB-ZVS PWM Converter. The converter output is 28V, 100A and regulated by phase-shift control method. IGBT is used by the main switching device and high frequency transformer is made for operating at 30kHz switching frequency. When the load vary widely, converter's ZVS characteristic is expressed by experiment result.

  • PDF